咨询与建议

限定检索结果

文献类型

  • 6,421 篇 会议
  • 25 篇 期刊文献
  • 3 册 图书

馆藏范围

  • 6,448 篇 电子文献
  • 1 种 纸本馆藏

日期分布

学科分类号

  • 3,849 篇 工学
    • 3,647 篇 计算机科学与技术...
    • 1,431 篇 软件工程
    • 790 篇 光学工程
    • 302 篇 信息与通信工程
    • 242 篇 控制科学与工程
    • 219 篇 电气工程
    • 201 篇 机械工程
    • 80 篇 生物医学工程(可授...
    • 68 篇 生物工程
    • 67 篇 电子科学与技术(可...
    • 64 篇 仪器科学与技术
    • 36 篇 建筑学
    • 33 篇 力学(可授工学、理...
    • 33 篇 土木工程
    • 33 篇 航空宇航科学与技...
    • 26 篇 安全科学与工程
    • 22 篇 交通运输工程
    • 20 篇 材料科学与工程(可...
    • 18 篇 化学工程与技术
  • 1,453 篇 理学
    • 945 篇 物理学
    • 890 篇 数学
    • 352 篇 统计学(可授理学、...
    • 134 篇 生物学
    • 38 篇 系统科学
    • 23 篇 化学
  • 160 篇 管理学
    • 110 篇 图书情报与档案管...
    • 52 篇 管理科学与工程(可...
    • 25 篇 工商管理
  • 112 篇 医学
    • 112 篇 临床医学
  • 17 篇 法学
    • 17 篇 社会学
  • 12 篇 农学
  • 8 篇 教育学
  • 7 篇 艺术学
  • 6 篇 经济学
  • 2 篇 军事学

主题

  • 2,288 篇 computer vision
  • 789 篇 pattern recognit...
  • 637 篇 cameras
  • 629 篇 computer science
  • 568 篇 face recognition
  • 555 篇 layout
  • 510 篇 image segmentati...
  • 509 篇 conferences
  • 498 篇 shape
  • 445 篇 robustness
  • 439 篇 object recogniti...
  • 388 篇 humans
  • 332 篇 feature extracti...
  • 321 篇 training
  • 303 篇 object detection
  • 262 篇 image recognitio...
  • 257 篇 application soft...
  • 246 篇 lighting
  • 238 篇 image reconstruc...
  • 237 篇 computational mo...

机构

  • 41 篇 microsoft resear...
  • 26 篇 department of co...
  • 21 篇 swiss fed inst t...
  • 21 篇 school of comput...
  • 20 篇 department of co...
  • 19 篇 swiss fed inst t...
  • 19 篇 carnegie mellon ...
  • 18 篇 department of co...
  • 17 篇 department of in...
  • 17 篇 the robotics ins...
  • 17 篇 institute of com...
  • 16 篇 univ sci & techn...
  • 16 篇 robotics institu...
  • 15 篇 tsinghua univ pe...
  • 14 篇 department of el...
  • 14 篇 school of comput...
  • 14 篇 school of comput...
  • 13 篇 univ maryland co...
  • 13 篇 microsoft resear...
  • 13 篇 microsoft resear...

作者

  • 39 篇 timofte radu
  • 28 篇 s.k. nayar
  • 24 篇 huang thomas s.
  • 23 篇 xiaoou tang
  • 22 篇 t. kanade
  • 20 篇 t.s. huang
  • 19 篇 van gool luc
  • 19 篇 t. darrell
  • 19 篇 chellappa rama
  • 18 篇 nayar shree k.
  • 17 篇 a.k. jain
  • 17 篇 a. zisserman
  • 17 篇 jain anil k.
  • 16 篇 g. healey
  • 16 篇 torralba antonio
  • 16 篇 heung-yeung shum
  • 16 篇 zisserman andrew
  • 16 篇 l. van gool
  • 15 篇 m. shah
  • 15 篇 ji qiang

语言

  • 6,447 篇 英文
  • 2 篇 其他
检索条件"任意字段=1992 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, CVPR 1992"
6449 条 记 录,以下是51-60 订阅
排序:
Leveraging Pre-trained Multi-task Deep Models for Trustworthy Facial Analysis in Affective Behaviour Analysis in-the-Wild
Leveraging Pre-trained Multi-task Deep Models for Trustworth...
收藏 引用
ieee/CVF conference on computer vision and pattern recognition (cvpr)
作者: Saychenko, Andrey V. r Sber AI Lab Moscow Russia HSE Univ Lab Algorithms & Technol Network Anal Nizhnii Novgorod Russia
This article presents our results for the sixth Affective Behavior Analysis in-the-wild (ABAW) competition. To improve the trustworthiness of facial analysis, we study the possibility of using pre-trained deep models ... 详细信息
来源: 评论
Outsmarting Biometric Imposters: Enhancing Iris-recognition System Security through Physical Adversarial Example Generation and PAD Fine-Tuning
Outsmarting Biometric Imposters: Enhancing Iris-Recognition ...
收藏 引用
ieee/CVF conference on computer vision and pattern recognition (cvpr)
作者: Ogino, Yuka Kakizaki, Kazuya Toizumi, Takahiro Ito, Atsushi NEC Corp Ltd Tokyo Japan
In this paper, we address the vulnerabilities of iris recognition systems to both image-based impersonation attacks and Presentation Attacks (PAs) in physical environments. While existing Presentation Attack Detection... 详细信息
来源: 评论
Exploring Facial Expression recognition through Semi-Supervised Pre-training and Temporal Modeling
Exploring Facial Expression Recognition through Semi-Supervi...
收藏 引用
ieee/CVF conference on computer vision and pattern recognition (cvpr)
作者: Yu, Jun Wei, Zhihong Cai, Zhongpeng Zhao, Gongpeng Zhang, Zerui Wang, Yongqi Xie, Guochen Zhu, Jichao Zhu, Wangyuan Liu, Qingsong Liang, Jiaen Univ Sci & Technol China Hefei Peoples R China Unisound AI Technol Co Ltd Beijing Peoples R China
Facial Expression recognition (FER) plays a crucial role in computer vision and finds extensive applications across various fields. This paper aims to present our approach for the 6th Affective Behavior Analysis in-th... 详细信息
来源: 评论
Label-free Anomaly Detection in Aerial Agricultural Images with Masked Image Modeling
Label-free Anomaly Detection in Aerial Agricultural Images w...
收藏 引用
ieee/CVF conference on computer vision and pattern recognition (cvpr)
作者: Shikhar, Sambal Sobti, Anupam Plaksha Univ Mohali Punjab India
Detecting various types of stresses (nutritional, water, nitrogen, etc.) in agricultural fields is critical for farmers to ensure maximum productivity. However, stresses show up in different shapes and sizes across di... 详细信息
来源: 评论
Separating the "Chirp" from the "Chat": Self-supervised Visual Grounding of Sound and Language
Separating the "Chirp" from the "Chat": Self-supervised Visu...
收藏 引用
ieee/CVF conference on computer vision and pattern recognition (cvpr)
作者: Hamilton, Mark Zisserman, Andrew Hershey, John R. Freeman, William T. MIT 77 Massachusetts Ave Cambridge MA 02139 USA Microsoft Redmond WA 98052 USA Google Oxford England
We present DenseAV, a novel dual encoder grounding architecture that learns high-resolution, semantically meaningful, and audio-visual aligned features solely through watching videos. We show that DenseAV can discover... 详细信息
来源: 评论
Coarse or Fine? Recognising Action End States without Labels
Coarse or Fine? Recognising Action End States without Labels
收藏 引用
ieee/CVF conference on computer vision and pattern recognition (cvpr)
作者: Moltisanti, Davide Bilen, Hakan Sevilla-Lara, Laura Keller, Frank Univ Bath Bath Avon England Univ Edinburgh Edinburgh Midlothian Scotland
We focus on the problem of recognising the end state of an action in an image, which is critical for understanding what action is performed and in which manner. We study this focusing on the task of predicting the coa... 详细信息
来源: 评论
Strategies to Improve Real-World Applicability of Laparoscopic Anatomy Segmentation Models
Strategies to Improve Real-World Applicability of Laparoscop...
收藏 引用
ieee/CVF conference on computer vision and pattern recognition (cvpr)
作者: Kolbinger, Fiona R. He, Jiangpeng Ma, Jinge Zhu, Fengqing Purdue Univ W Lafayette IN 47907 USA
Accurate identification and localization of anatomical structures of varying size and appearance in laparoscopic imaging are necessary to leverage the potential of computer vision techniques for surgical decision supp... 详细信息
来源: 评论
Emotion recognition Using Transformers with Random Masking
Emotion Recognition Using Transformers with Random Masking
收藏 引用
ieee/CVF conference on computer vision and pattern recognition (cvpr)
作者: Min, Seongjae Yang, Junseok Lim, Sejoon Kookmin Univ Seoul South Korea
In recent years, deep learning has achieved innovative advancements in various fields, including the analysis of human emotions and behaviors. Initiatives such as the Affective Behavior Analysis in-the-wild (ABAW) com... 详细信息
来源: 评论
A Dual-Mode Approach for vision-Based Navigation in a Lunar Landing Scenario
A Dual-Mode Approach for Vision-Based Navigation in a Lunar ...
收藏 引用
ieee/CVF conference on computer vision and pattern recognition (cvpr)
作者: Ostrogovich, Luca Del Prete, Roberto Tomasicchio, Giuseppe Longepe, Nicolas Renga, Alfredo Univ Naples Federico II Dept Ind Engn Naples Italy Telespazio SRL Rome Italy ESA ESRIN Lab Frascati Italy
In this research, a novel approach for autonomous spacecraft navigation, particularly in lunar contexts, is presented, focusing on vision-based techniques. The system incorporates lunar crater recognition in conjuncti... 详细信息
来源: 评论
FPN-IAIA-BL: A Multi-Scale Interpretable Deep Learning Model for Classification of Mass Margins in Digital Mammography
FPN-IAIA-BL: A Multi-Scale Interpretable Deep Learning Model...
收藏 引用
ieee/CVF conference on computer vision and pattern recognition (cvpr)
作者: Yang, Julia Barnett, Alina Jade Donnelly, Jon Kishore, Satvik Fang, Jerry Schwartz, Fides Regina Chen, Chaofan Lo, Joseph Y. Rudin, Cynthia Duke Univ Durham NC 27708 USA Brigham & Womens Hosp 75 Francis St Boston MA 02115 USA Univ Maine Orono ME USA
Digital mammography is essential to breast cancer detection, and deep learning offers promising tools for faster and more accurate mammogram analysis. In radiology and other high-stakes environments, uninterpretable (... 详细信息
来源: 评论