咨询与建议

限定检索结果

文献类型

  • 6,421 篇 会议
  • 25 篇 期刊文献
  • 3 册 图书

馆藏范围

  • 6,448 篇 电子文献
  • 1 种 纸本馆藏

日期分布

学科分类号

  • 3,849 篇 工学
    • 3,647 篇 计算机科学与技术...
    • 1,431 篇 软件工程
    • 790 篇 光学工程
    • 302 篇 信息与通信工程
    • 242 篇 控制科学与工程
    • 219 篇 电气工程
    • 201 篇 机械工程
    • 80 篇 生物医学工程(可授...
    • 68 篇 生物工程
    • 67 篇 电子科学与技术(可...
    • 64 篇 仪器科学与技术
    • 36 篇 建筑学
    • 33 篇 力学(可授工学、理...
    • 33 篇 土木工程
    • 33 篇 航空宇航科学与技...
    • 26 篇 安全科学与工程
    • 22 篇 交通运输工程
    • 20 篇 材料科学与工程(可...
    • 18 篇 化学工程与技术
  • 1,453 篇 理学
    • 945 篇 物理学
    • 890 篇 数学
    • 352 篇 统计学(可授理学、...
    • 134 篇 生物学
    • 38 篇 系统科学
    • 23 篇 化学
  • 160 篇 管理学
    • 110 篇 图书情报与档案管...
    • 52 篇 管理科学与工程(可...
    • 25 篇 工商管理
  • 112 篇 医学
    • 112 篇 临床医学
  • 17 篇 法学
    • 17 篇 社会学
  • 12 篇 农学
  • 8 篇 教育学
  • 7 篇 艺术学
  • 6 篇 经济学
  • 2 篇 军事学

主题

  • 2,288 篇 computer vision
  • 789 篇 pattern recognit...
  • 637 篇 cameras
  • 629 篇 computer science
  • 568 篇 face recognition
  • 555 篇 layout
  • 510 篇 image segmentati...
  • 509 篇 conferences
  • 498 篇 shape
  • 445 篇 robustness
  • 439 篇 object recogniti...
  • 388 篇 humans
  • 332 篇 feature extracti...
  • 321 篇 training
  • 303 篇 object detection
  • 262 篇 image recognitio...
  • 257 篇 application soft...
  • 246 篇 lighting
  • 238 篇 image reconstruc...
  • 237 篇 computational mo...

机构

  • 41 篇 microsoft resear...
  • 26 篇 department of co...
  • 21 篇 swiss fed inst t...
  • 21 篇 school of comput...
  • 20 篇 department of co...
  • 19 篇 swiss fed inst t...
  • 19 篇 carnegie mellon ...
  • 18 篇 department of co...
  • 17 篇 department of in...
  • 17 篇 the robotics ins...
  • 17 篇 institute of com...
  • 16 篇 univ sci & techn...
  • 16 篇 robotics institu...
  • 15 篇 tsinghua univ pe...
  • 14 篇 department of el...
  • 14 篇 school of comput...
  • 14 篇 school of comput...
  • 13 篇 univ maryland co...
  • 13 篇 microsoft resear...
  • 13 篇 microsoft resear...

作者

  • 39 篇 timofte radu
  • 28 篇 s.k. nayar
  • 24 篇 huang thomas s.
  • 23 篇 xiaoou tang
  • 22 篇 t. kanade
  • 20 篇 t.s. huang
  • 19 篇 van gool luc
  • 19 篇 t. darrell
  • 19 篇 chellappa rama
  • 18 篇 nayar shree k.
  • 17 篇 a.k. jain
  • 17 篇 a. zisserman
  • 17 篇 jain anil k.
  • 16 篇 g. healey
  • 16 篇 torralba antonio
  • 16 篇 heung-yeung shum
  • 16 篇 zisserman andrew
  • 16 篇 l. van gool
  • 15 篇 m. shah
  • 15 篇 ji qiang

语言

  • 6,447 篇 英文
  • 2 篇 其他
检索条件"任意字段=1992 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, CVPR 1992"
6449 条 记 录,以下是701-710 订阅
排序:
Cross-Domain Multi-task Learning for Object Detection and Saliency Estimation
Cross-Domain Multi-task Learning for Object Detection and Sa...
收藏 引用
ieee/CVF conference on computer vision and pattern recognition (cvpr)
作者: Khattar, Apoorv Hegde, Srinidhi Hebbalaguppe, Ramya TCS Res Mumbai Maharashtra India
Multi-task learning (MTL) is a learning paradigm that aims at joint optimization of multiple tasks using a single neural network for better performance and generalization. In practice, MTL rests on the inherent assump... 详细信息
来源: 评论
Subjective Quality Optimized Efficient Image Compression
Subjective Quality Optimized Efficient Image Compression
收藏 引用
ieee/CVF conference on computer vision and pattern recognition (cvpr)
作者: Wang, Xining Chen, Tong Ma, Zhan Nanjing Univ Vis Lab Nanjing Peoples R China
In this paper, we propose an efficient image compression framework that is optimized for subjective quality. Our framework is mainly based on the NLAIC (NonLocal Attention Optimized Image Coding) model which applied V... 详细信息
来源: 评论
NTIRE 2022 Burst Super-Resolution Challenge
NTIRE 2022 Burst Super-Resolution Challenge
收藏 引用
ieee/CVF conference on computer vision and pattern recognition (cvpr)
作者: Bhat, Goutam Danelljan, Martin Timofte, Radu Cao, Yizhen Cao, Yuntian Chen, Meiya Chen, Xihao Cheng, Shen Dudhane, Akshay Fan, Haoqiang Gang, Ruipeng Gao, Jian Gu, Yan Huang, Jie Huang, Liufeng Jo, Youngsu Kang, Sukju Khan, Salman Khan, Fahad Shahbaz Kondo, Yuki Li, Chenghua Li, Fangya Li, Jinjing Li, Youwei Li, Zechao Liu, Chenming Liu, Shuaicheng Liu, Zikun Liu, Zhuoming Luo, Ziwei Luo, Zhengxiong Mehta, Nancy Murala, Subrahmanyam Nam, Yoonchan Nakatani, Chihiro Ostyakov, Pavel Pan, Jinshan Song, Ge Sun, Jian Sun, Long Tang, Jinhui Ukita, Norimichi Wen, Zhihong Wu, Qi Wu, Xiaohe Xiao, Zeyu Xiong, Zhiwei Xu, Rongjian Xu, Ruikang Yan, Youliang Yang, Jialin Yang, Wentao Yang, Zhongbao Yasue, Fuma Yao, Mingde Yu, Lei Zhang, Cong Zamir, Syed Waqas Zhang, Jianxing Zhang, Shuohao Zhang, Zhilu Zheng, Qian Zhou, Gaofeng Zhussip, Magauiya Zou, Xueyi Zuo, Wangmeng Swiss Fed Inst Technol Comp Vis Lab Zurich Switzerland Julius Maximilian Univ Wurzburg Wurzburg Germany Commun Univ China Beijing Peoples R China UHDTV Res & Applicat Lab Beijing Peoples R China Chinese Acad Sci Inst Automat Beijing Peoples R China Harbin Inst Technol Harbin Peoples R China South China Univ Technol Guangzhou Peoples R China Megvii Technol Beijing Peoples R China Univ Elect Sci & Technol China UESTC Chengdu Peoples R China Xiaomi Beijing Peoples R China Huawei Noahs Ark Lab Shenzhen Peoples R China Nanjing Univ Sci & Technol Nanjing Peoples R China SRC B Beijing Peoples R China CASIA Beijing Peoples R China Indian Inst Technol Ropar IIT Ropar Rupnagar Punjab India Mohamed Bin Zayed Univ AI MBZUAI Abu Dhabi U Arab Emirates Incept Inst Artificial Intelligence IIAI Abu Dhabi U Arab Emirates MBZUAI Abu Dhabi U Arab Emirates Australian Natl Univ ANU Canberra ACT Australia Linkoping Univ Linkoping Sweden Toyota Technol Inst TTI Nagoya Aichi Japan Sogang Univ Seoul South Korea UESTC Chengdu Peoples R China USTC Hefei Peoples R China WHU Wuhan Peoples R China Univ Sci & Technol China Hefei Peoples R China
Burst super-resolution has received increased attention in recent years due to its applications in mobile photography. By merging information from multiple shifted images of a scene, burst super-resolution aims to rec... 详细信息
来源: 评论
BiCnet-TKS: Learning Efficient Spatial-Temporal Representation for Video Person Re-Identification
BiCnet-TKS: Learning Efficient Spatial-Temporal Representati...
收藏 引用
ieee/CVF conference on computer vision and pattern recognition (cvpr)
作者: Hou, Ruibing Chang, Hong Ma, Bingpeng Huang, Rui Shan, Shiguang Chinese Acad Sci Inst Comp Technol CAS Key Lab Intelligent Informat Proc Beijing 100190 Peoples R China Univ Chinese Acad Sci Beijing 100049 Peoples R China Chinese Univ Hong Kong Shenzhen Inst Artificial Intelligence & Robot Soc Shenzhen 518172 Guangdong Peoples R China CAS Ctr Excellence Brain Sci & Intelligence Techn Shanghai 200031 Peoples R China
In this paper, we present an efficient spatial-temporal representation for video person re-identification (reID). Firstly, we propose a Bilateral Complementary Network (BiCnet) for spatial complementarity modeling. Sp... 详细信息
来源: 评论
CNN-based morphological decomposition of X-ray images for details and defects contrast enhancement
CNN-based morphological decomposition of X-ray images for de...
收藏 引用
ieee/CVF conference on computer vision and pattern recognition (cvpr)
作者: Madmad, Tahani Delinte, Nicolas De Vleeschouwer, Christophe UCLouvain ICTEAM Louvain La Neuve Belgium
This paper introduces a new learning based framework for X-ray images that relies on a morphological decomposition of the signal into two main components, separating images into local textures and piecewise smooth (ca... 详细信息
来源: 评论
A Universal Encoder Rate Distortion Optimization Framework for Learned Compression
A Universal Encoder Rate Distortion Optimization Framework f...
收藏 引用
ieee/CVF conference on computer vision and pattern recognition (cvpr)
作者: Zhao, Jing Li, Bin Li, Jiahao Xiong, Ruiqin Lu, Yan Peking Univ Beijing Peoples R China Microsoft Res Asia Beijing Peoples R China
Learning-based image compression has drawn increasing attention in recent years. Despite impressive progress has been made, it still lacks a universal encoder optimization method to seek efficient representation for d... 详细信息
来源: 评论
DeepObjStyle: Deep Object-based Photo Style Transfer
DeepObjStyle: Deep Object-based Photo Style Transfer
收藏 引用
ieee/CVF conference on computer vision and pattern recognition (cvpr)
作者: Mastan, Indra Deep Raman, Shanmuganathan Indian Inst Technol Gandhinagar Gandhinagar Gujarat India
One of the major challenges of style transfer is the appropriate image features supervision between the output image and the input images (style and content). An efficient strategy would be to define an object map bet... 详细信息
来源: 评论
Deep Learning based Spatial-Temporal In-loop filtering for Versatile Video Coding
Deep Learning based Spatial-Temporal In-loop filtering for V...
收藏 引用
ieee/CVF conference on computer vision and pattern recognition (cvpr)
作者: Pham, Chi D. K. Fu, Chen Zhou, Jinjia Hosei Univ Tokyo Japan JST PRESTO Saitama Japan
The existing deep learning-based Versatile Video Coding (VVC) in-loop filtering (ILF) enhancement works mainly focus on learning the one-to-one mapping between the reconstructed and the original video frame, ignoring ... 详细信息
来源: 评论
Multi-task Learning with Attention for End-to-end Autonomous Driving
Multi-task Learning with Attention for End-to-end Autonomous...
收藏 引用
ieee/CVF conference on computer vision and pattern recognition (cvpr)
作者: Ishihara, Keishi Kanervisto, Anssi Miura, Jun Hautamaki, Ville Toyohashi Univ Technol Toyohashi Aichi Japan Univ Eastern Finland Kuopio Finland
Autonomous driving systems need to handle complex scenarios such as lane following, avoiding collisions, taking turns, and responding to traffic signals. In recent years, approaches based on end-to-end behavioral clon... 详细信息
来源: 评论
EBSR: Feature Enhanced Burst Super-Resolution with Deformable Alignment
EBSR: Feature Enhanced Burst Super-Resolution with Deformabl...
收藏 引用
ieee/CVF conference on computer vision and pattern recognition (cvpr)
作者: Luo, Ziwei Yu, Lei Mo, Xuan Li, Youwei Jia, Lanpeng Fan, Haoqiang Sun, Jian Liu, Shuaicheng Megvii Technol Beijing Peoples R China Univ Elect Sci & Technol China Chengdu Sichuan Peoples R China
We propose a novel architecture to handle the problem of multi frame super-resolution (MFSR). The proposed framework is known as Enhanced Burst Super-Resolution (EBSR), which divides the MFSR problem into three parts:... 详细信息
来源: 评论