咨询与建议

限定检索结果

文献类型

  • 6,421 篇 会议
  • 25 篇 期刊文献
  • 3 册 图书

馆藏范围

  • 6,448 篇 电子文献
  • 1 种 纸本馆藏

日期分布

学科分类号

  • 3,849 篇 工学
    • 3,647 篇 计算机科学与技术...
    • 1,431 篇 软件工程
    • 790 篇 光学工程
    • 302 篇 信息与通信工程
    • 242 篇 控制科学与工程
    • 219 篇 电气工程
    • 201 篇 机械工程
    • 80 篇 生物医学工程(可授...
    • 68 篇 生物工程
    • 67 篇 电子科学与技术(可...
    • 64 篇 仪器科学与技术
    • 36 篇 建筑学
    • 33 篇 力学(可授工学、理...
    • 33 篇 土木工程
    • 33 篇 航空宇航科学与技...
    • 26 篇 安全科学与工程
    • 22 篇 交通运输工程
    • 20 篇 材料科学与工程(可...
    • 18 篇 化学工程与技术
  • 1,453 篇 理学
    • 945 篇 物理学
    • 890 篇 数学
    • 352 篇 统计学(可授理学、...
    • 134 篇 生物学
    • 38 篇 系统科学
    • 23 篇 化学
  • 160 篇 管理学
    • 110 篇 图书情报与档案管...
    • 52 篇 管理科学与工程(可...
    • 25 篇 工商管理
  • 112 篇 医学
    • 112 篇 临床医学
  • 17 篇 法学
    • 17 篇 社会学
  • 12 篇 农学
  • 8 篇 教育学
  • 7 篇 艺术学
  • 6 篇 经济学
  • 2 篇 军事学

主题

  • 2,288 篇 computer vision
  • 789 篇 pattern recognit...
  • 637 篇 cameras
  • 629 篇 computer science
  • 568 篇 face recognition
  • 555 篇 layout
  • 510 篇 image segmentati...
  • 509 篇 conferences
  • 498 篇 shape
  • 445 篇 robustness
  • 439 篇 object recogniti...
  • 388 篇 humans
  • 332 篇 feature extracti...
  • 321 篇 training
  • 303 篇 object detection
  • 262 篇 image recognitio...
  • 257 篇 application soft...
  • 246 篇 lighting
  • 238 篇 image reconstruc...
  • 237 篇 computational mo...

机构

  • 41 篇 microsoft resear...
  • 26 篇 department of co...
  • 21 篇 swiss fed inst t...
  • 21 篇 school of comput...
  • 20 篇 department of co...
  • 19 篇 swiss fed inst t...
  • 19 篇 carnegie mellon ...
  • 18 篇 department of co...
  • 17 篇 department of in...
  • 17 篇 the robotics ins...
  • 17 篇 institute of com...
  • 16 篇 univ sci & techn...
  • 16 篇 robotics institu...
  • 15 篇 tsinghua univ pe...
  • 14 篇 department of el...
  • 14 篇 school of comput...
  • 14 篇 school of comput...
  • 13 篇 univ maryland co...
  • 13 篇 microsoft resear...
  • 13 篇 microsoft resear...

作者

  • 39 篇 timofte radu
  • 28 篇 s.k. nayar
  • 24 篇 huang thomas s.
  • 23 篇 xiaoou tang
  • 22 篇 t. kanade
  • 20 篇 t.s. huang
  • 19 篇 van gool luc
  • 19 篇 t. darrell
  • 19 篇 chellappa rama
  • 18 篇 nayar shree k.
  • 17 篇 a.k. jain
  • 17 篇 a. zisserman
  • 17 篇 jain anil k.
  • 16 篇 g. healey
  • 16 篇 torralba antonio
  • 16 篇 heung-yeung shum
  • 16 篇 zisserman andrew
  • 16 篇 l. van gool
  • 15 篇 m. shah
  • 15 篇 ji qiang

语言

  • 6,447 篇 英文
  • 2 篇 其他
检索条件"任意字段=1992 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, CVPR 1992"
6449 条 记 录,以下是781-790 订阅
排序:
Training Domain-invariant Object Detector Faster with Feature Replay and Slow Learner
Training Domain-invariant Object Detector Faster with Featur...
收藏 引用
ieee/CVF conference on computer vision and pattern recognition (cvpr)
作者: Lee, Chaehyeon Seo, Junghoon Jung, Heechul Kyungpook Natl Univ Dept Artificial Intelligence Daegu South Korea SI Analyt Co Ltd Daejeon South Korea SI Analyt Daejeon South Korea
In deep learning-based object detection on remote sensing domain, nuisance factors, which affect observed variables while not affecting predictor variables, often matters because they cause domain changes. Previously,... 详细信息
来源: 评论
Learning to predict crop type from heterogeneous sparse labels using meta-learning
Learning to predict crop type from heterogeneous sparse labe...
收藏 引用
ieee/CVF conference on computer vision and pattern recognition (cvpr)
作者: Tseng, Gabriel Kerner, Hannah Nakalembe, Catherine Becker-Reshef, Inbal NASA Harvest College Pk MD 20742 USA Univ Maryland College Pk MD 20742 USA
There are many labelled datasets relating to land cover and crop type mapping that cover diverse geographies, agroecologies and land uses. However, these labels are often extremely sparse, particularly in low- and mid... 详细信息
来源: 评论
Inaccuracy of State-Action Value Function For Non-Optimal Actions in Adversarially Trained Deep Neural Policies
Inaccuracy of State-Action Value Function For Non-Optimal Ac...
收藏 引用
ieee/CVF conference on computer vision and pattern recognition (cvpr)
作者: Korkmaz, Ezgi KTH Royal Inst Technol Stockholm Sweden
The introduction of deep neural networks as function approximator for the state-action value function has led to the creation of a new research area for self-learning systems that explore policies from high dimensiona... 详细信息
来源: 评论
Anchor-based Plain Net for Mobile Image Super-Resolution
Anchor-based Plain Net for Mobile Image Super-Resolution
收藏 引用
ieee/CVF conference on computer vision and pattern recognition (cvpr)
作者: Du, Zongcai Liu, Jie Tang, Jie Wu, Gangshan Nanjing Ubivers State Key Lab Novel Software Technol Nanjing Peoples R China
Along with the rapid development of real-world applications, higher requirements on the accuracy and efficiency of image super-resolution (SR) are brought forward. Though existing methods have achieved remarkable succ... 详细信息
来源: 评论
A Watermarking-Based Framework for Protecting Deep Image Classifiers Against Adversarial Attacks
A Watermarking-Based Framework for Protecting Deep Image Cla...
收藏 引用
ieee/CVF conference on computer vision and pattern recognition (cvpr)
作者: Sun, Chen Yang, En-Hui Univ Waterloo Dept Elect & Comp Engn Waterloo ON Canada
Although deep learning-based models have achieved tremendous success in image-related tasks, they are known to be vulnerable to adversarial examples-inputs with imperceptible, but subtly crafted perturbation which foo... 详细信息
来源: 评论
DFM: A Performance Baseline for Deep Feature Matching
DFM: A Performance Baseline for Deep Feature Matching
收藏 引用
ieee/CVF conference on computer vision and pattern recognition (cvpr)
作者: Efe, Ufuk Ince, Kutalmis Gokalp Alatan, A. Aydin Middle East Tech Univ Dept Elect & Elect Engn Ctr Image Anal OGAM Ankara Turkey
A novel image matching method is proposed that utilizes learned features extracted by an off-the-shelf deep neural network to obtain a promising performance. The proposed method uses pre-trained VGG architecture as a ... 详细信息
来源: 评论
Insights from the Future for Continual Learning
Insights from the Future for Continual Learning
收藏 引用
ieee/CVF conference on computer vision and pattern recognition (cvpr)
作者: Douillard, Arthur Valle, Eduardo Ollion, Charles Robert, Thomas Cord, Matthieu Sorbonne Univ Paris France Heuritech Paris France Univerty Campinas Campinas Brazil CMAP Ecole Polytech Palaiseau France Valeo Ai Paris France
Continual learning aims to learn tasks sequentially, with (often severe) constraints on the storage of old learning samples, without suffering from catastrophic forgetting. In this work, we propose prescient continual... 详细信息
来源: 评论
DANICE: Domain adaptation without forgetting in neural image compression
DANICE: Domain adaptation without forgetting in neural image...
收藏 引用
ieee/CVF conference on computer vision and pattern recognition (cvpr)
作者: Katakol, Sudeep Herranz, Luis Yang, Fei Mrak, Marta Univ Michigan Ann Arbor MI 48109 USA UAB Comp Vis Ctr Barcelona Spain BBC R&D London England
Neural image compression (NIC) is a new coding paradigm where coding capabilities are captured by deep models learned from data. This data-driven nature enables new potential functionalities. In this paper, we study t... 详细信息
来源: 评论
SRFlow-DA: Super-Resolution Using Normalizing Flow with Deep Convolutional Block
SRFlow-DA: Super-Resolution Using Normalizing Flow with Deep...
收藏 引用
ieee/CVF conference on computer vision and pattern recognition (cvpr)
作者: Jo, Younghyun Yang, Sejong Kim, Seon Joo Yonsei Univ Seoul South Korea
Multiple high-resolution (HR) images can be generated from a single low-resolution (LR) image, as super-resolution (SR) is an underdetermined problem. Recently, the conditional normalizing flow-based model, SRFlow, sh... 详细信息
来源: 评论
DAMSL: Domain Agnostic Meta Score-based Learning
DAMSL: Domain Agnostic Meta Score-based Learning
收藏 引用
ieee/CVF conference on computer vision and pattern recognition (cvpr)
作者: Cai, John Cai, Bill Mei, Shen Sheng Princeton Univ Princeton NJ 08544 USA MIT Cambridge MA 02139 USA Pensees Pte Ltd Singapore Singapore
In this paper, we propose Domain Agnostic Meta Score-based Learning (DAMSL), a novel, versatile and highly effective solution that delivers significant out-performance over state-of-the-art methods for cross-domain fe... 详细信息
来源: 评论