咨询与建议

限定检索结果

文献类型

  • 6,421 篇 会议
  • 25 篇 期刊文献
  • 3 册 图书

馆藏范围

  • 6,448 篇 电子文献
  • 1 种 纸本馆藏

日期分布

学科分类号

  • 3,849 篇 工学
    • 3,647 篇 计算机科学与技术...
    • 1,431 篇 软件工程
    • 790 篇 光学工程
    • 302 篇 信息与通信工程
    • 242 篇 控制科学与工程
    • 219 篇 电气工程
    • 201 篇 机械工程
    • 80 篇 生物医学工程(可授...
    • 68 篇 生物工程
    • 67 篇 电子科学与技术(可...
    • 64 篇 仪器科学与技术
    • 36 篇 建筑学
    • 33 篇 力学(可授工学、理...
    • 33 篇 土木工程
    • 33 篇 航空宇航科学与技...
    • 26 篇 安全科学与工程
    • 22 篇 交通运输工程
    • 20 篇 材料科学与工程(可...
    • 18 篇 化学工程与技术
  • 1,453 篇 理学
    • 945 篇 物理学
    • 890 篇 数学
    • 352 篇 统计学(可授理学、...
    • 134 篇 生物学
    • 38 篇 系统科学
    • 23 篇 化学
  • 160 篇 管理学
    • 110 篇 图书情报与档案管...
    • 52 篇 管理科学与工程(可...
    • 25 篇 工商管理
  • 112 篇 医学
    • 112 篇 临床医学
  • 17 篇 法学
    • 17 篇 社会学
  • 12 篇 农学
  • 8 篇 教育学
  • 7 篇 艺术学
  • 6 篇 经济学
  • 2 篇 军事学

主题

  • 2,288 篇 computer vision
  • 789 篇 pattern recognit...
  • 637 篇 cameras
  • 629 篇 computer science
  • 568 篇 face recognition
  • 555 篇 layout
  • 510 篇 image segmentati...
  • 509 篇 conferences
  • 498 篇 shape
  • 445 篇 robustness
  • 439 篇 object recogniti...
  • 388 篇 humans
  • 332 篇 feature extracti...
  • 321 篇 training
  • 303 篇 object detection
  • 262 篇 image recognitio...
  • 257 篇 application soft...
  • 246 篇 lighting
  • 238 篇 image reconstruc...
  • 237 篇 computational mo...

机构

  • 41 篇 microsoft resear...
  • 26 篇 department of co...
  • 21 篇 swiss fed inst t...
  • 21 篇 school of comput...
  • 20 篇 department of co...
  • 19 篇 swiss fed inst t...
  • 19 篇 carnegie mellon ...
  • 18 篇 department of co...
  • 17 篇 department of in...
  • 17 篇 the robotics ins...
  • 17 篇 institute of com...
  • 16 篇 univ sci & techn...
  • 16 篇 robotics institu...
  • 15 篇 tsinghua univ pe...
  • 14 篇 department of el...
  • 14 篇 school of comput...
  • 14 篇 school of comput...
  • 13 篇 univ maryland co...
  • 13 篇 microsoft resear...
  • 13 篇 microsoft resear...

作者

  • 39 篇 timofte radu
  • 28 篇 s.k. nayar
  • 24 篇 huang thomas s.
  • 23 篇 xiaoou tang
  • 22 篇 t. kanade
  • 20 篇 t.s. huang
  • 19 篇 van gool luc
  • 19 篇 t. darrell
  • 19 篇 chellappa rama
  • 18 篇 nayar shree k.
  • 17 篇 a.k. jain
  • 17 篇 a. zisserman
  • 17 篇 jain anil k.
  • 16 篇 g. healey
  • 16 篇 torralba antonio
  • 16 篇 heung-yeung shum
  • 16 篇 zisserman andrew
  • 16 篇 l. van gool
  • 15 篇 m. shah
  • 15 篇 ji qiang

语言

  • 6,447 篇 英文
  • 2 篇 其他
检索条件"任意字段=1992 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, CVPR 1992"
6449 条 记 录,以下是901-910 订阅
排序:
Multi-Scale Hourglass Hierarchical Fusion Network for Single Image Deraining
Multi-Scale Hourglass Hierarchical Fusion Network for Single...
收藏 引用
ieee/CVF conference on computer vision and pattern recognition (cvpr)
作者: Chen, Xiang Huang, Yufeng Xu, Lei Shenyang Aerosp Univ Coll Elect & Informat Engn Shenyang Liaoning Peoples R China Shenyang Fire Sci & Technol Res Inst MEM Shenyang Liaoning Peoples R China
Rain streaks bring serious blurring and visual quality degradation, which often vary in size, direction and density. Current CNN-based methods achieve encouraging performance, while are limited to depict rain characte... 详细信息
来源: 评论
Domain adaptation, Explainability & Fairness in AI for Medical Image Analysis: Diagnosis of COVID-19 based on 3-D Chest CT-scans
Domain adaptation, Explainability & Fairness in AI for Medic...
收藏 引用
ieee computer society conference on computer vision and pattern recognition Workshops (cvprW)
作者: Dimitrios Kollias Anastasios Arsenos Stefanos Kollias Queen Mary University of London UK National Technical University of Athens Greece National Infrastructures for Research and Technology Greece
The paper presents the DEF-AI-MIA COV19D Competition, which is organized in the framework of the ’Domain adaptation, Explainability, Fairness in AI for Medical Image Analysis (DEF-AI-MIA)’ Workshop of the 2024 Compu... 详细信息
来源: 评论
PLM: Partial Label Masking for Imbalanced Multi-label Classification
PLM: Partial Label Masking for Imbalanced Multi-label Classi...
收藏 引用
ieee/CVF conference on computer vision and pattern recognition (cvpr)
作者: Duarte, Kevin Rawat, Yogesh Shah, Mubarak Univ Cent Florida Ctr Res Comp Vis Orlando FL 32816 USA
Neural networks trained on real-world datasets with long-tailed label distributions are biased towards frequent classes and perform poorly on infrequent classes. The imbalance in the ratio of positive and negative sam... 详细信息
来源: 评论
LEGAN: Disentangled Manipulation of Directional Lighting and Facial Expressions whilst Leveraging Human Perceptual Judgements
LEGAN: Disentangled Manipulation of Directional Lighting and...
收藏 引用
ieee/CVF conference on computer vision and pattern recognition (cvpr)
作者: Banerjee, Sandipan Joshi, Ajjen Mahajan, Prashant Bhattacharya, Sneha Kyal, Survi Mishra, Taniya Affectiva Boston MA 02109 USA Amazon Seattle WA USA Silver Spoon Animat Brooklyn NY USA SureStart San Francisco CA USA
Building facial analysis systems that generalize to extreme variations in lighting and facial expressions is a challenging problem that can potentially be alleviated using natural-looking synthetic data. Towards that,... 详细信息
来源: 评论
Cross Modality Knowledge Distillation for Multi-modal Aerial View Object Classification
Cross Modality Knowledge Distillation for Multi-modal Aerial...
收藏 引用
ieee/CVF conference on computer vision and pattern recognition (cvpr)
作者: Yang, Lehan Xu, Kele Univ Sydney Camperdown NSW Australia Key Lab Parallel & Distributed Proc Changsha Peoples R China
In the case of bad weather or low lighting conditions, a single sensor may not be able to capture enough information for object identification. Compared with the traditional optical image, synthetic aperture radar (SA... 详细信息
来源: 评论
Detecting Anomalies in Semantic Segmentation with Prototypes
Detecting Anomalies in Semantic Segmentation with Prototypes
收藏 引用
ieee/CVF conference on computer vision and pattern recognition (cvpr)
作者: Fontanel, Dario Cermelli, Fabio Mancini, Massimiliano Caputo, Barbara Politecn Torino Turin Italy Italian Inst Technol Genoa Italy Univ Tubingen Tubingen Germany
Traditional semantic segmentation methods can recognize at test time only the classes that are present in the training set. This is a significant limitation, especially for semantic segmentation algorithms mounted on ... 详细信息
来源: 评论
Spot the GEO Satellites: From Dataset to Kelvins SpotGEO Challenge
Spot the GEO Satellites: From Dataset to Kelvins SpotGEO Cha...
收藏 引用
ieee/CVF conference on computer vision and pattern recognition (cvpr)
作者: Chen, Bo Liu, Daqi Chin, Tat-Jun Rutten, Mark Derksenv, Dawa Martens, Marcus von Looz, Moritz Lecuyer, Gurvan Izzo, Dario Univ Adelaide Adelaide SA Australia InTrack Solut Adelaide SA Australia European Space Agcy Paris France
The Geosynchronous Equatorial Orbit (GEO) is home to many important space assets such as telecommunication and navigational satellites. Monitoring Resident Space Objects (RSOs) in GEO is a crucial aspect in achieving ... 详细信息
来源: 评论
Self-training Guided Adversarial Domain Adaptation For Thermal Imagery
Self-training Guided Adversarial Domain Adaptation For Therm...
收藏 引用
ieee/CVF conference on computer vision and pattern recognition (cvpr)
作者: Akkaya, Ibrahim Batuhan Altinel, Fazil Halici, Ugur Aselsan Inc Res Ctr Ankara Turkey Middle East Tech Univ Dept Elect & Elect Engn Ankara Turkey NOROM Neurosci & Neurotechnol Excellency Ctr Ankara Turkey
Deep models trained on large-scale RGB image datasets have shown tremendous success. It is important to apply such deep models to real-world problems. However, these models suffer from a performance bottleneck under i... 详细信息
来源: 评论
Contrastive Learning Improves Model Robustness Under Label Noise
Contrastive Learning Improves Model Robustness Under Label N...
收藏 引用
ieee/CVF conference on computer vision and pattern recognition (cvpr)
作者: Ghosh, Aritra Lan, Andrew Univ Massachusetts Amherst MA 01003 USA
Deep neural network-based classifiers trained with the categorical cross-entropy (CCE) loss are sensitive to label noise in the training data. One common type of method that can mitigate the impact of label noise can ... 详细信息
来源: 评论
RUIG: Realistic Underwater Image Generation Towards Restoration
RUIG: Realistic Underwater Image Generation Towards Restorat...
收藏 引用
ieee/CVF conference on computer vision and pattern recognition (cvpr)
作者: Desai, Chaitra Tabib, Ramesh Ashok Reddy, Sai Sudheer Patil, Ujwala Mudenagudi, Uma KLE Technol Univ Ctr Excellence Visual Intelligence CEVI Hubballi Karnataka India
In this paper, we present a novel method for generating synthetic underwater images considering revised image formation model. We propose to use the generated synthetic underwater images to train a conditional generat... 详细信息
来源: 评论