Large vision-Language Models (LVLMs) have advanced considerably, intertwining visual recognition and language understanding to generate content that is not only coherent but also contextually attuned. Despite their su...
详细信息
ISBN:
(纸本)9798350353006
Large vision-Language Models (LVLMs) have advanced considerably, intertwining visual recognition and language understanding to generate content that is not only coherent but also contextually attuned. Despite their success, LVLMs still suffer from the issue of object hallucinations, where models generate plausible yet incorrect outputs that include objects that do not exist in the images. To mitigate this issue, we introduce Visual Contrastive Decoding (VCD), a simple and training-free method that contrasts output distributions derived from original and distorted visual inputs. The proposed VCD effectively reduces the over-reliance on statistical bias and unimodal priors, two essential causes of object hallucinations. This adjustment ensures the generated content is closely grounded to visual inputs, resulting in contextually accurate outputs. Our experiments show that VCD, without either additional training or the usage of external tools, significantly mitigates the object hallucination issue across different LVLM families. Beyond mitigating object hallucinations, VCD also excels in general LVLM benchmarks, highlighting its wide-ranging applicability.
Recent advancements in vision-Language Models (VLMs) have marked a significant leap in bridging the gap between computervision and natural language processing. However, traditional VLMs, trained through contrastive l...
详细信息
ISBN:
(纸本)9798350353006
Recent advancements in vision-Language Models (VLMs) have marked a significant leap in bridging the gap between computervision and natural language processing. However, traditional VLMs, trained through contrastive learning on limited and noisy image-text pairs, often lack the spatial and linguistic understanding to generalize well to dense vision tasks or less common languages. Our approach, Solid Foundation CLIP (SF-CLIP), circumvents this issue by implicitly building on the solid visual and language understanding of foundational models trained on vast amounts of unimodal data. SF-CLIP integrates contrastive image-text pretraining with a masked knowledge distillation from large foundational text and vision models. This methodology guides our VLM in developing robust text and image representations. As a result, SF-CLIP shows exceptional zero-shot classification accuracy and enhanced image and text retrieval capabilities, setting a new state of the art for ViT-B/16 trained on YFCC15M and CC12M. Moreover, the dense per-patch supervision enhances our zero-shot and linear probe performance in semantic segmentation tasks. A remarkable aspect of our model is its multilingual proficiency, evidenced by strong retrieval results in multiple languages despite being trained predominantly on English data. We achieve all of these improvements without sacrificing the training efficiency through our selective application of masked distillation and the inheritance of teacher word embeddings.
Autonomous vehicle (AV) systems rely on robust perception models as a cornerstone of safety assurance. However, objects encountered on the road exhibit a long-tailed distribution, with rare or unseen categories posing...
详细信息
ISBN:
(纸本)9798350353006
Autonomous vehicle (AV) systems rely on robust perception models as a cornerstone of safety assurance. However, objects encountered on the road exhibit a long-tailed distribution, with rare or unseen categories posing challenges to a deployed perception model. This necessitates an expensive process of continuously curating and annotating data with significant human effort. We propose to leverage recent advances in vision-language and large language models to design an Automatic Data Engine (AIDE) that automatically identifies issues, efficiently curates data, improves the model through auto-labeling, and verifies the model through generation of diverse scenarios. This process operates iteratively, allowing for continuous self-improvement of the model. We further establish a benchmark for open-world detection on AV datasets to comprehensively evaluate various learning paradigms, demonstrating our method's superior performance at a reduced cost.
This paper proposes LLaFS, the first attempt to leverage large language models (LLMs) in few-shot segmentation. In contrast to the conventional few-shot segmentation methods that only rely on the limited and biased in...
详细信息
ISBN:
(纸本)9798350353013;9798350353006
This paper proposes LLaFS, the first attempt to leverage large language models (LLMs) in few-shot segmentation. In contrast to the conventional few-shot segmentation methods that only rely on the limited and biased information from the annotated support images, LLaFS leverages the vast prior knowledge gained by LLM as an effective supplement and directly uses the LLM to segment images in a few-shot manner. To enable the text-based LLM to handle image-related tasks, we carefully design an input instruction that allows the LLM to produce segmentation results represented as polygons, and propose a region-attribute table to simulate the human visual mechanism and provide multi-modal guidance. We also synthesize pseudo samples and use curriculum learning for pretraining to augment data and achieve better optimization. LLaFS achieves state-of-the-art results on multiple datasets, showing the potential of using LLMs for few-shot computervision tasks.
Solving image and video jigsaw puzzles poses the challenging task of rearranging image fragments or video frames from unordered sequences to restore meaningful images and video sequences. Existing approaches often hin...
详细信息
ISBN:
(纸本)9798350353006
Solving image and video jigsaw puzzles poses the challenging task of rearranging image fragments or video frames from unordered sequences to restore meaningful images and video sequences. Existing approaches often hinge on discriminative models tasked with predicting either the absolute positions of puzzle elements or the permutation actions applied to the original data. Unfortunately, these methods face limitations in effectively solving puzzles with a large number of elements. In this paper, we propose JPDVT, an innovative approach that harnesses diffusion transformers to address this challenge. Specifically, we generate positional information for image patches or video frames, conditioned on their underlying visual content. This information is then employed to accurately assemble the puzzle pieces in their correct positions, even in scenarios involving missing pieces. Our method achieves state-of-the-art performance on several datasets.
We consider a critical issue of false negatives in vision-Language Pre-training (VLP), a challenge that arises from the inherent many-to-many correspondence of image-text pairs in large-scale web-crawled datasets. The...
ISBN:
(纸本)9798350353006
We consider a critical issue of false negatives in vision-Language Pre-training (VLP), a challenge that arises from the inherent many-to-many correspondence of image-text pairs in large-scale web-crawled datasets. The presence of false negatives can impede achieving optimal performance and even lead to a significant performance drop. To address this challenge, we propose MAFA (MAnaging FAlse negatives), which consists of two pivotal components building upon the recently developed GRouped mIni-baTch sampling (GRIT) strategy: 1) an efficient connection mining process that identifies and converts false negatives into positives, and 2) label smoothing for the image-text contrastive (ITC) loss. Our comprehensive experiments verify the effectiveness of MAFA across multiple downstream tasks, emphasizing the crucial role of addressing false negatives in VLP, potentially even surpassing the importance of addressing false positives. In addition, the compatibility of MAFA with the recent BLIP-family model is also demonstrated. Code is available at https://***/jaeseokbyun/MAFA.
We propose a method that can generate cinemagraphs automatically from a still landscape image using a pre-trained StyleGAN. Inspired by the success of recent unconditional video generation, we leverage a powerful pre-...
详细信息
ISBN:
(纸本)9798350353013;9798350353006
We propose a method that can generate cinemagraphs automatically from a still landscape image using a pre-trained StyleGAN. Inspired by the success of recent unconditional video generation, we leverage a powerful pre-trained image generator to synthesize high-quality cinemagraphs. Unlike previous approaches that mainly utilize the latent space of a pre-trained StyleGAN, our approach utilizes its deep feature space for both GAN inversion and cinemagraph generation. Specifically, we propose multi-scale deep feature warping (MSDFW), which warps the intermediate features of a pre-trained StyleGAN at different resolutions. By using MSDFW, the generated cinemagraphs are of high resolution and exhibit plausible looping animation. We demonstrate the superiority of our method through user studies and quantitative comparisons with state-of-the-art cinemagraph generation methods and a video generation method that uses a pre-trained StyleGAN.
The remarkable success of vision Transformers in Artificial Neural Networks (ANNs) has led to a growing interest in incorporating the self-attention mechanism and transformer-based architecture into Spiking Neural Net...
详细信息
ISBN:
(纸本)9798350353013;9798350353006
The remarkable success of vision Transformers in Artificial Neural Networks (ANNs) has led to a growing interest in incorporating the self-attention mechanism and transformer-based architecture into Spiking Neural Networks (SNNs). While existing methods propose spiking self-attention mechanisms that are compatible with SNNs, they lack reasonable scaling methods, and the overall architectures proposed by these methods suffer from a bottleneck in effectively extracting local features. To address these challenges, we propose a novel spiking self-attention mechanism named Dual Spike Self-Attention (DSSA) with a reasonable scaling method. Based on DSSA, we propose a novel spiking vision Transformer architecture called SpikingResformer, which combines the ResNet-based multi-stage architecture with our proposed DSSA to improve both performance and energy efficiency while reducing parameters. Experimental results show that SpikingResformer achieves higher accuracy with fewer parameters and lower energy consumption than other spiking vision Transformer counterparts. Notably, our SpikingResformer-L achieves 79.40% top-1 accuracy on ImageNet with 4 time-steps, which is the state-of-the-art result in the SNN field. Codes are available at https://***/xyshi2000/SpikingResformer
We present EgoTAP, a heatmap-to-3D pose lifting method for highly accurate stereo egocentric 3D pose estimation. Severe self-occlusion and out-of-view limbs in egocentric camera views make accurate pose estimation a c...
详细信息
ISBN:
(纸本)9798350353013;9798350353006
We present EgoTAP, a heatmap-to-3D pose lifting method for highly accurate stereo egocentric 3D pose estimation. Severe self-occlusion and out-of-view limbs in egocentric camera views make accurate pose estimation a challenging problem. To address the challenge, prior methods employ joint heatmaps-probabilistic 2D representations of the body pose, but heatmap-to-3D pose conversion still remains an inaccurate process. We propose a novel heatmap-to-3D lifting method composed of the Grid ViT Encoder and the Propagation Network. The Grid ViT Encoder summarizes joint heatmaps into effective feature embedding using self-attention. Then, the Propagation Network estimates the 3D pose by utilizing skeletal information to better estimate the position of obscure joints. Our method significantly outperforms the previous state-of-the-art qualitatively and quantitatively demonstrated by a 23.9% reduction of error in an MPJPE metric. Our source code is available on GitHub (1).
Trajectory prediction is fundamental in computervision and autonomous driving, particularly for understanding pedestrian behavior and enabling proactive decision-making. Existing approaches in this field often assume...
详细信息
ISBN:
(纸本)9798350353006
Trajectory prediction is fundamental in computervision and autonomous driving, particularly for understanding pedestrian behavior and enabling proactive decision-making. Existing approaches in this field often assume precise and complete observational data, neglecting the challenges associated with out-of-view objects and the noise inherent in sensor data due to limited camera range, physical obstructions, and the absence of ground truth for denoised sensor data. Such oversights are critical safety concerns, as they can result in missing essential, non-visible objects. To bridge this gap, we present a novel method for out-of-sight trajectory prediction that leverages a vision-positioning technique. Our approach denoises noisy sensor observations in an unsupervised manner and precisely maps sensor-based trajectories of out-of-sight objects into visual trajectories. This method has demonstrated state-of-the-art performance in out-of-sight noisy sensor trajectory denoising and prediction on the Vi-Fi and JRDB datasets. By enhancing trajectory prediction accuracy and addressing the challenges of out-of-sight objects, our work significantly contributes to improving the safety and reliability of autonomous driving in complex environments. Our work represents the first initiative towards Out-Of-Sight Trajectory prediction (OOSTraj), setting a new benchmark for future research.
暂无评论