We explore the boundaries of scaling up a multilingual vision and language model, both in terms of size of the components and the breadth of its training task mixture. Our model achieves new levels of performance on a...
详细信息
ISBN:
(纸本)9798350353006
We explore the boundaries of scaling up a multilingual vision and language model, both in terms of size of the components and the breadth of its training task mixture. Our model achieves new levels of performance on a wide-range of varied and complex tasks, including multiple image-based captioning and question-answering tasks, image-based document understanding and few-shot (in-context) learning, as well as object detection, video question answering, and video captioning. Our model advances the state-of-the-art on most vision-and-language benchmarks considered (20+ of them). Finally, we observe emerging capabilities, such as complex counting and multilingual object detection, tasks that are not explicitly in the training mix.
Recently, efficient vision Transformers have shown great performance with low latency on resource-constrained devices. Conventionally, they use 4x4 patch embeddings and a 4-stage structure at the macro level, while ut...
详细信息
ISBN:
(纸本)9798350353013;9798350353006
Recently, efficient vision Transformers have shown great performance with low latency on resource-constrained devices. Conventionally, they use 4x4 patch embeddings and a 4-stage structure at the macro level, while utilizing sophisticated attention with multi-head configuration at the micro level. This paper aims to address computational redundancy at all design levels in a memory-efficient manner. We discover that using larger-stride patchify stem not only reduces memory access costs but also achieves competitive performance by leveraging token representations with reduced spatial redundancy from the early stages. Furthermore, our preliminary analyses suggest that attention layers in the early stages can be substituted with convolutions, and several attention heads in the latter stages are computationally redundant. To handle this, we introduce a single-head attention module that inherently prevents head redundancy and simultaneously boosts accuracy by parallelly combining global and local information. Building upon our solutions, we introduce SHViT, a SingleHead vision Transformer that obtains the state-of-the-art speed-accuracy tradeoff. For example, on ImageNet-1k, our SHViT-S4 is 3.3x, 8.1x, and 2.4x faster than MobileViTv2 x1.0 on GPU, CPU, and iPhone12 mobile device, respectively, while being 1.3% more accurate. For object detection and instance segmentation on MS COCO using MaskRCNN head, our model achieves performance comparable to FastViT-SA12 while exhibiting 3.8x and 2.0x lower backbone latency on GPU and mobile device, respectively.
We propose a lightweight and scalable Regional Point-Language Contrastive learning framework, namely RegionPLC, for open-world 3D scene understanding, aiming to identify and recognize open-set objects and categories. ...
详细信息
ISBN:
(纸本)9798350353006
We propose a lightweight and scalable Regional Point-Language Contrastive learning framework, namely RegionPLC, for open-world 3D scene understanding, aiming to identify and recognize open-set objects and categories. Specifically, based on our empirical studies, we introduce a 3D-aware SFusion strategy that fuses 3D vision-language pairs derived from multiple 2D foundation models, yielding high-quality, dense region-level language descriptions without human 3D annotations. Subsequently, we devise a region-aware point-discriminative contrastive learning objective to enable robust and effective 3D learning from dense regional language supervision. We carry out extensive experiments on ScanNet, ScanNet200, and nuScenes datasets, and our model outperforms prior 3D open-world scene understanding approaches by an average of 17.2% and 9.1% for semantic and instance segmentation, respectively, while maintaining greater scalability and lower resource demands. Furthermore, our method has the flexibility to be effortlessly integrated with language models to enable open-ended grounded 3D reasoning without extra task-specific training. Code will be released at github.
From image-text pairs, large-scale vision-language models (VLMs) learn to implicitly associate image regions with words, which prove effective for tasks like visual question answering. However, leveraging the learned ...
详细信息
ISBN:
(纸本)9798350353013;9798350353006
From image-text pairs, large-scale vision-language models (VLMs) learn to implicitly associate image regions with words, which prove effective for tasks like visual question answering. However, leveraging the learned association for open-vocabulary semantic segmentation remains a challenge. In this paper, we propose a simple, yet extremely effective, training-free technique, Plug-and-Play Open-Vocabulary Semantic Segmentation (PnP-OVSS) for this task. PnP-OVSS leverages a VLM with direct text-to-image cross-attention and an image-text matching loss. To balance between over-segmentation and under-segmentation, we introduce Salience Dropout;by iteratively dropping patches that the model is most attentive to, we are able to better resolve the entire extent of the segmentation mask. PnP-OVSS does not require any neural network training and performs hyperparameter tuning without the need for any segmentation annotations, even for a validation set. PnP-OVSS demonstrates substantial improvements over comparable baselines (+29.4% mIoU on Pascal VOC, +13.2% mIoU on Pascal Context, +14.0% mIoU on MS COCO, +2.4% mIoU on COCO Stuff) and even outperforms most baselines that conduct additional network training on top of pretrained VLMs. Our codebase is at https://***/letitiabanana/PnP-OVSS.
Domain Generalization (DG) aims to resolve distribution shifts between source and target domains, and current DG methods are default to the setting that data from source and target domains share identical categories. ...
详细信息
ISBN:
(纸本)9798350353006
Domain Generalization (DG) aims to resolve distribution shifts between source and target domains, and current DG methods are default to the setting that data from source and target domains share identical categories. Nevertheless, there exists unseen classes from target domains in practical scenarios. To address this issue, Open Set Domain Generalization (OSDG) has emerged and several methods have been exclusively proposed. However, most ex-isting methods adopt complex architectures with slight improvement compared with DG methods. Recently, vision-language models (VLMs) have been introduced in DG following the fine-tuning paradigm, but consume huge training overhead with large vision models. Therefore, in this paper, we innovate to transfer knowledge from VLMs to lightweight vision models and improve the robustness by introducing Perturbation Distillation (PD) from three perspectives, including Score, Class and Instance (SCI), named SCI- PD. Moreover, previous methods are oriented by the benchmarks with identical and fixed splits, ignoring the divergence between source domains. These methods are revealed to suffer from sharp performance decay with our proposed new benchmark Hybrid Domain Generalization (HDG) and a novel metric H-2-CV, which construct various splits to comprehensively assess the robustness of algorithms. Extensive experiments demonstrate that our method outperforms state-of-the-art algorithms on multiple datasets, especially improving the robustness when con-fronting data scarcity.
As a new embodied vision task, Instance ImageGoal Navigation (IIN) aims to navigate to a specified object depicted by a goal image in an unexplored environment. The main challenge of this task lies in identifying the ...
详细信息
ISBN:
(纸本)9798350353006
As a new embodied vision task, Instance ImageGoal Navigation (IIN) aims to navigate to a specified object depicted by a goal image in an unexplored environment. The main challenge of this task lies in identifying the target object from different viewpoints while rejecting similar distractors. Existing ImageGoal Navigation methods usually adopt the simple Exploration-Exploitation framework and ignore the identification of specific instance during navigation. In this work, we propose to imitate the human behaviour of "getting closer to confirm" when distinguishing objects from a distance. Specifically, we design a new modular navigation framework named Instance-aware Exploration-Verification- Exploitation (IEVE) for instance-level image goal navigation. Our method allows for active switching among the exploration, verification, and exploitation actions, thereby facilitating the agent in making reasonable decisions under different situations. On the challenging HabitatMatterport 3D semantic (HM3D-SEM) dataset, our method surpasses previous state-of-the-art work, with a classical segmentation model (0.684 vs. 0.561 success) or a robust model (0.702 vs. 0.561 success). Our code will be made publicly available at https://***/XiaohanLei/IEVE.
We show how shadows can be efficiently generated in differentiable rendering of triangle meshes. Our central observation is that pre-filtered shadow mapping, a technique for approximating shadows based on rendering fr...
详细信息
ISBN:
(纸本)9798350301298
We show how shadows can be efficiently generated in differentiable rendering of triangle meshes. Our central observation is that pre-filtered shadow mapping, a technique for approximating shadows based on rendering from the perspective of a light, can be combined with existing differentiable rasterizers to yield differentiable visibility information. We demonstrate at several inverse graphics problems that differentiable shadow maps are orders of magnitude faster than differentiable light transport simulation with similar accuracy - while differentiable rasterization without shadows often fails to converge.
The recently proposed SparseFormer architecture provides an alternative approach to visual understanding by utilizing a significantly lower number of visual tokens via adjusting RoIs, greatly reducing computational co...
详细信息
ISBN:
(纸本)9798350353006
The recently proposed SparseFormer architecture provides an alternative approach to visual understanding by utilizing a significantly lower number of visual tokens via adjusting RoIs, greatly reducing computational costs while still achieving promising performance. However, training SparseFormers from scratch is still expensive, and scal-ing up the number of parameters can be challenging. In this paper, we propose to bootstrap SparseFormers from ViT-based vision foundation models in a simple and efficient way. Since the majority of SparseFormer blocks are the standard transformer ones, we can inherit weights from large-scale pre-trained vision transformers and freeze them as much as possible. Therefore, we only need to train the SparseFormer-specific lightweight focusing transformer to adjust token RoIs and fine-tune a few early pre-trained blocks to align the final token representation. In such a way, we can bootstrap SparseFormer architectures from various large-scale pre-trained models (e.g., IN-21K pre-trained AugRegs or CLIPs) using a rather smaller amount of training samples (e.g., IN-1K) and without labels or captions within just a few hours. As a result, the bootstrapped unimodal SparseFormer (from AugReg-ViT-L/16-384) can reach 84.9% accuracy on IN-1K with only 49 tokens, and the multimodal SparseFormer from CLIPs also demonstrates notable zero-shot performance with highly reduced computational cost without seeing any caption during the bootstrapping procedure. In addition, CLIP-bootstrapped SparseFormers, which align the output space with language without seeing a word, can serve as efficient vision encoders in multimodal large language models. Code and models are available at https://***/showlab/sparseformer
vision Transformer (ViT) has shown high potential in video recognition, owing to its flexible design, adaptable self-attention mechanisms, and the efficacy of masked pretraining. Yet, it remains unclear how to adapt t...
详细信息
ISBN:
(纸本)9798350353006
vision Transformer (ViT) has shown high potential in video recognition, owing to its flexible design, adaptable self-attention mechanisms, and the efficacy of masked pretraining. Yet, it remains unclear how to adapt these pretrained short-term ViTs for temporal action detection (TAD) in untrimmed videos. The existing works treat them as off-the-shelf feature extractors for each short-trimmed snippet without capturing the fine-grained relation among different snippets in a broader temporal context. To mitigate this issue, this paper focuses on designing a new mechanism for adapting these pre-trained ViT models as a unified long-form video transformer to fully unleash its modeling power in capturing inter-snippet relation, while still keeping low computation overhead and memory consumption for efficient TAD. To this end, we design effective crosssnippet propagation modules to gradually exchange short-term video information among different snippets from two levels. For inner-backbone information propagation, we introduce a cross-snippet propagation strategy to enable multi-snippet temporal feature interaction inside the backbone. For post-backbone information propagation, we propose temporal transformer layers for further clip-level modeling. With the plain ViT-B pre-trained with VideoMAE, our end-to-end temporal action detector (ViT-TAD) yields a very competitive performance to previous temporal action detectors, riching up to 69.5 average mAP on THUMOS14, 37.40 average mAP on ActivityNet-1.3 and 17.20 average mAP on FineAction.
For privacy and security concerns, the need to erase unwanted information from pre-trained vision models is becoming evident nowadays. In real-world scenarios, erasure requests originate at any time from both users an...
详细信息
ISBN:
(纸本)9798350353006
For privacy and security concerns, the need to erase unwanted information from pre-trained vision models is becoming evident nowadays. In real-world scenarios, erasure requests originate at any time from both users and model owners. These requests usually form a sequence. Therefore, under such a setting, selective information is expected to be continuously removed from a pre-trained model while maintaining the rest. We define this problem as continual forgetting and identify two key challenges. (i) For unwanted knowledge, efficient and effective deleting is crucial. (ii) For remaining knowledge, the impact brought by the forgetting procedure should be minimal. To address them, we propose Group Sparse LoRA (GS-LoRA). Specifically, towards (i), we use LoRA modules to fine-tune the FFN layers in Transformer blocks for each forgetting task independently, and towards (ii), a simple group sparse regularization is adopted, enabling automatic selection of specific LoRA groups and zeroing out the others. GS-LoRA is effective, parameter-efficient, data-efficient, and easy to implement. We conduct extensive experiments on face recognition, object detection and image classification and demonstrate that GS-LoRA manages to forget specific classes with minimal impact on other classes. Codes will be released on https://***/bjzhb666/GS-LoRA.
暂无评论