咨询与建议

限定检索结果

文献类型

  • 22,774 篇 会议
  • 111 篇 期刊文献
  • 23 册 图书

馆藏范围

  • 22,907 篇 电子文献
  • 1 种 纸本馆藏

日期分布

学科分类号

  • 13,400 篇 工学
    • 10,881 篇 计算机科学与技术...
    • 3,451 篇 软件工程
    • 2,430 篇 机械工程
    • 1,722 篇 光学工程
    • 1,011 篇 控制科学与工程
    • 997 篇 电气工程
    • 762 篇 信息与通信工程
    • 394 篇 仪器科学与技术
    • 337 篇 生物工程
    • 257 篇 生物医学工程(可授...
    • 215 篇 电子科学与技术(可...
    • 113 篇 化学工程与技术
    • 113 篇 安全科学与工程
    • 98 篇 测绘科学与技术
    • 94 篇 交通运输工程
    • 86 篇 建筑学
    • 82 篇 土木工程
  • 3,362 篇 医学
    • 3,348 篇 临床医学
    • 79 篇 基础医学(可授医学...
  • 3,252 篇 理学
    • 1,953 篇 物理学
    • 1,665 篇 数学
    • 567 篇 统计学(可授理学、...
    • 484 篇 生物学
    • 245 篇 系统科学
    • 110 篇 化学
  • 507 篇 管理学
    • 299 篇 图书情报与档案管...
    • 220 篇 管理科学与工程(可...
    • 75 篇 工商管理
  • 252 篇 艺术学
    • 252 篇 设计学(可授艺术学...
  • 62 篇 法学
    • 59 篇 社会学
  • 40 篇 农学
  • 25 篇 教育学
  • 19 篇 经济学
  • 11 篇 军事学
  • 3 篇 文学

主题

  • 10,127 篇 computer vision
  • 4,025 篇 pattern recognit...
  • 2,900 篇 training
  • 1,958 篇 computational mo...
  • 1,792 篇 cameras
  • 1,759 篇 visualization
  • 1,485 篇 shape
  • 1,466 篇 image segmentati...
  • 1,448 篇 feature extracti...
  • 1,412 篇 three-dimensiona...
  • 1,288 篇 robustness
  • 1,169 篇 computer archite...
  • 1,144 篇 layout
  • 1,141 篇 computer science
  • 1,134 篇 semantics
  • 1,070 篇 object detection
  • 1,043 篇 conferences
  • 1,009 篇 benchmark testin...
  • 967 篇 codes
  • 810 篇 face recognition

机构

  • 135 篇 univ sci & techn...
  • 118 篇 univ chinese aca...
  • 118 篇 chinese univ hon...
  • 110 篇 carnegie mellon ...
  • 99 篇 tsinghua univers...
  • 99 篇 microsoft resear...
  • 94 篇 swiss fed inst t...
  • 92 篇 zhejiang univ pe...
  • 82 篇 university of sc...
  • 81 篇 zhejiang univers...
  • 77 篇 shanghai ai lab ...
  • 77 篇 university of ch...
  • 72 篇 shanghai jiao to...
  • 68 篇 microsoft res as...
  • 65 篇 national laborat...
  • 65 篇 alibaba grp peop...
  • 64 篇 tsinghua univ pe...
  • 63 篇 adobe research
  • 60 篇 peking univ peop...
  • 59 篇 peng cheng labor...

作者

  • 78 篇 van gool luc
  • 72 篇 timofte radu
  • 63 篇 zhang lei
  • 45 篇 luc van gool
  • 40 篇 yang yi
  • 37 篇 loy chen change
  • 33 篇 xiaoou tang
  • 33 篇 li stan z.
  • 33 篇 qi tian
  • 32 篇 sun jian
  • 31 篇 liu yang
  • 31 篇 li fei-fei
  • 30 篇 chen chen
  • 30 篇 tian qi
  • 30 篇 pascal fua
  • 29 篇 darrell trevor
  • 28 篇 ying shan
  • 27 篇 li xin
  • 27 篇 vasconcelos nuno
  • 27 篇 hanqing lu

语言

  • 22,831 篇 英文
  • 50 篇 其他
  • 20 篇 中文
  • 5 篇 土耳其文
  • 2 篇 日文
检索条件"任意字段=1994 IEEE Computer-Society Conference on Computer Vision and Pattern Recognition"
22908 条 记 录,以下是4361-4370 订阅
排序:
QuantNAS: Quantization-aware Neural Architecture Search For Efficient Deployment On Mobile Device
QuantNAS: Quantization-aware Neural Architecture Search For ...
收藏 引用
ieee computer society conference on computer vision and pattern recognition Workshops (CVPRW)
作者: Tianxiao Gao Li Guo Shanwei Zhao Peihan Xu Yukun Yang Xionghao Liu Shihao Wang Shiai Zhu Dajiang Zhou Ant Group
Deep convolutional networks are increasingly applied in mobile AI scenarios. To achieve efficient deployment, researchers combine neural architecture search (NAS) and quantization to find the best quantized architectu... 详细信息
来源: 评论
General Multi-label Image Classification with Transformers
General Multi-label Image Classification with Transformers
收藏 引用
ieee/CVF conference on computer vision and pattern recognition (CVPR)
作者: Lanchantin, Jack Wang, Tianlu Ordonez, Vicente Qi, Yanjun Univ Virginia Charlottesville VA 22903 USA
Multi-label image classification is the task of predicting a set of labels corresponding to objects, attributes or other entities present in an image. In this work we propose the Classification Transformer (C-Tran), a... 详细信息
来源: 评论
NTIRE 2023 Challenge on Image Super-Resolution (×4): Methods and Results
NTIRE 2023 Challenge on Image Super-Resolution (×4): Method...
收藏 引用
2023 ieee/CVF conference on computer vision and pattern recognition Workshops, CVPRW 2023
作者: Zhang, Yulun Zhang, Kai Chen, Zheng Li, Yawei Timofte, Radu Zhang, Junpei Zhang, Kexin Peng, Rui Ma, Yanbiao Jiao, Licheng Huang, Huaibo Zhou, Xiaoqiang Ai, Yuang He, Ran Qiu, Yajun Zhu, Qiang Li, Pengfei Li, Qianhui Zhu, Shuyuan Zhang, Dafeng Li, Jia Wang, Fan Li, Chunmiao Kim, TaeHyung Kil, Jungkeong Kim, Eon Yu, Yeonseung Lee, Beomyeol Lee, Subin Lim, Seokjae Chae, Somi Choi, Heungjun Huang, ZhiKai Chen, YiChung Chiang, YuanChun Yang, HaoHsiang Chen, WeiTing Chang, HuaEn Chen, I-Hsiang Hsieh, ChiaHsuan Kuo, SyYen Choi, Ui-Jin Conde, Marcos V. Khowaja, Sunder Ali Yoon, Jiseok Lee, Ik Hyun Gendy, Garas Sabor, Nabil Hou, Jingchao He, Guanghui Zhang, Zhao Li, Baiang Zheng, Huan Zhao, Suiyi Gao, Yangcheng Wei, Yanyan Ren, Jiahuan Wei, Jiayu Li, Yanfeng Sun, Jia Cheng, Zhanyi Li, Zhiyuan Yao, Xu Wang, Xinyi Li, Danxu Cui, Xuan Cao, Jun Li, Cheng Zheng, Jianbin Sarvaiya, Anjali Prajapati, Kalpesh Patra, Ratnadeep Barik, Pragnesh Rathod, Chaitanya Upla, Kishor Raja, Kiran Ramachandra, Raghavendra Busch, Christoph Computer Vision Lab Eth Zurich Switzerland Shanghai Jiao Tong University China University of Würzburg Germany Xidian University China Mais&cripac Institute of Automation Chinese Academy of Sciences China School of Artificial Intelligence University of Chinese Academy of Sciences China University of Science and Technology of China China Beijing Institute of Technology China School of Information Science and Technology ShanghaiTech University China School of Information and Communication Engineering University of Electronic Science and Technology of China China China Lotte Data Communication Company Seoul Korea Republic of Graduate Institute of Electronics Engineering National Taiwan University Taiwan Department of Electrical Engineering National Taiwan University Taiwan Graduate Institute of Communication Engineering National Taiwan University Taiwan ServiceNow United States MegaStudyEdu Korea Republic of Computer Vision Lab Caidas University of Würzburg Germany University of Sindh Pakistan Iklab Inc. Tech University of Korea Siheung-Si Korea Republic of Micro-Nano Electronics Department Shanghai Jiao Tong University China Electrical Engineering Department Faculty of Engineering Assiut University Egypt Hefei University of Technology China Beijing Jiaotong University China South China University of Technology Guangdong Guangzhou China Sardar Vallabhbhai National Institute of Technology India Norwegian University of Science and Technology Norway
This paper reviews the NTIRE 2023 challenge on image super-resolution (×4), focusing on the proposed solutions and results. The task of image super-resolution (SR) is to generate a high-resolution (HR) output fro... 详细信息
来源: 评论
DeFlow: Learning Complex Image Degradations from Unpaired Data with Conditional Flows
DeFlow: Learning Complex Image Degradations from Unpaired Da...
收藏 引用
ieee/CVF conference on computer vision and pattern recognition (CVPR)
作者: Wolf, Valentin Lugmayr, Andreas Danelljan, Martin Van Gool, Luc Timofte, Radu Swiss Fed Inst Technol Comp Vis Lab Zurich Switzerland
The difficulty of obtaining paired data remains a major bottleneck for learning image restoration and enhancement models for real-world applications. Current strategies aim to synthesize realistic training data by mod... 详细信息
来源: 评论
Self-Promoted Prototype Refinement for Few-Shot Class-Incremental Learning
Self-Promoted Prototype Refinement for Few-Shot Class-Increm...
收藏 引用
ieee/CVF conference on computer vision and pattern recognition (CVPR)
作者: Zhu, Kai Cao, Yang Zhai, Wei Cheng, Jie Zha, Zheng-Jun Univ Sci & Technol China Hefei Peoples R China Huawei Technol Co Ltd Shenzhen Peoples R China
Few-shot class-incremental learning is to recognize the new classes given few samples and not forget the old classes. It is a challenging task since representation optimization and prototype reorganization can only be... 详细信息
来源: 评论
Weakly Supervised Video Salient Object Detection
Weakly Supervised Video Salient Object Detection
收藏 引用
ieee/CVF conference on computer vision and pattern recognition (CVPR)
作者: Zhao, Wangbo Zhang, Jing Li, Long Barnes, Nick Liu, Nian Han, Junwei Northwestern Polytech Univ Brain & Artificial Intelligence Lab Xian Peoples R China Australian Natl Univ Canberra ACT Australia CSIRO Canberra ACT Australia Incept Inst Artificial Intelligence Abu Dhabi U Arab Emirates
Significant performance improvement has been achieved for fully-supervised video salient object detection with the pixel-wise labeled training datasets, which are time-consuming and expensive to obtain. To relieve the... 详细信息
来源: 评论
Image Change Captioning by Learning from an Auxiliary Task
Image Change Captioning by Learning from an Auxiliary Task
收藏 引用
ieee/CVF conference on computer vision and pattern recognition (CVPR)
作者: Hosseinzadeh, Mehrdad Wang, Yang Univ Manitoba Winnipeg MB Canada Huawei Technol Canada Markham ON Canada
We tackle the challenging task of image change captioning. The goal is to describe the subtle difference between two very similar images by generating a sentence caption. While the recent methods mainly focus on propo... 详细信息
来源: 评论
Leveraging Large Language Models for Multimodal Search
Leveraging Large Language Models for Multimodal Search
收藏 引用
ieee computer society conference on computer vision and pattern recognition Workshops (CVPRW)
作者: Oriol Barbany Michael Huang Xinliang Zhu Arnab Dhua CSIC-UPC Institut de Robòtica i Informàtica Industrial Visual Search & AR Amazon
Multimodal search has become increasingly important in providing users with a natural and effective way to express their search intentions. Images offer fine-grained details of the desired products, while text allows ... 详细信息
来源: 评论
Data-Efficient and Robust Task Selection for Meta-Learning
Data-Efficient and Robust Task Selection for Meta-Learning
收藏 引用
ieee computer society conference on computer vision and pattern recognition Workshops (CVPRW)
作者: Donglin Zhan James Anderson Columbia University New York NY
Meta-learning methods typically learn tasks under the assumption that all tasks are equally important. However, this assumption is often not valid. In real-world applications, tasks can vary both in their importance d... 详细信息
来源: 评论
NExT-QA: Next Phase of Question-Answering to Explaining Temporal Actions
NExT-QA: Next Phase of Question-Answering to Explaining Temp...
收藏 引用
ieee/CVF conference on computer vision and pattern recognition (CVPR)
作者: Xiao, Junbin Shang, Xindi Yao, Angela Chua, Tat-Seng Natl Univ Singapore Dept Comp Sci Singapore Singapore
We introduce NExT-QA, a rigorously designed video question answering (VideoQA) benchmark to advance video understanding from describing to explaining the temporal actions. Based on the dataset, we set up multi-choice ... 详细信息
来源: 评论