咨询与建议

限定检索结果

文献类型

  • 22,774 篇 会议
  • 111 篇 期刊文献
  • 23 册 图书

馆藏范围

  • 22,907 篇 电子文献
  • 1 种 纸本馆藏

日期分布

学科分类号

  • 13,400 篇 工学
    • 10,881 篇 计算机科学与技术...
    • 3,451 篇 软件工程
    • 2,430 篇 机械工程
    • 1,722 篇 光学工程
    • 1,011 篇 控制科学与工程
    • 997 篇 电气工程
    • 762 篇 信息与通信工程
    • 394 篇 仪器科学与技术
    • 337 篇 生物工程
    • 257 篇 生物医学工程(可授...
    • 215 篇 电子科学与技术(可...
    • 113 篇 化学工程与技术
    • 113 篇 安全科学与工程
    • 98 篇 测绘科学与技术
    • 94 篇 交通运输工程
    • 86 篇 建筑学
    • 82 篇 土木工程
  • 3,362 篇 医学
    • 3,348 篇 临床医学
    • 79 篇 基础医学(可授医学...
  • 3,252 篇 理学
    • 1,953 篇 物理学
    • 1,665 篇 数学
    • 567 篇 统计学(可授理学、...
    • 484 篇 生物学
    • 245 篇 系统科学
    • 110 篇 化学
  • 507 篇 管理学
    • 299 篇 图书情报与档案管...
    • 220 篇 管理科学与工程(可...
    • 75 篇 工商管理
  • 252 篇 艺术学
    • 252 篇 设计学(可授艺术学...
  • 62 篇 法学
    • 59 篇 社会学
  • 40 篇 农学
  • 25 篇 教育学
  • 19 篇 经济学
  • 11 篇 军事学
  • 3 篇 文学

主题

  • 10,127 篇 computer vision
  • 4,025 篇 pattern recognit...
  • 2,900 篇 training
  • 1,958 篇 computational mo...
  • 1,792 篇 cameras
  • 1,759 篇 visualization
  • 1,485 篇 shape
  • 1,466 篇 image segmentati...
  • 1,448 篇 feature extracti...
  • 1,412 篇 three-dimensiona...
  • 1,288 篇 robustness
  • 1,169 篇 computer archite...
  • 1,144 篇 layout
  • 1,141 篇 computer science
  • 1,134 篇 semantics
  • 1,070 篇 object detection
  • 1,043 篇 conferences
  • 1,009 篇 benchmark testin...
  • 967 篇 codes
  • 810 篇 face recognition

机构

  • 135 篇 univ sci & techn...
  • 118 篇 univ chinese aca...
  • 118 篇 chinese univ hon...
  • 110 篇 carnegie mellon ...
  • 99 篇 tsinghua univers...
  • 99 篇 microsoft resear...
  • 94 篇 swiss fed inst t...
  • 92 篇 zhejiang univ pe...
  • 82 篇 university of sc...
  • 81 篇 zhejiang univers...
  • 77 篇 shanghai ai lab ...
  • 77 篇 university of ch...
  • 72 篇 shanghai jiao to...
  • 68 篇 microsoft res as...
  • 65 篇 national laborat...
  • 65 篇 alibaba grp peop...
  • 64 篇 tsinghua univ pe...
  • 63 篇 adobe research
  • 60 篇 peking univ peop...
  • 59 篇 peng cheng labor...

作者

  • 78 篇 van gool luc
  • 72 篇 timofte radu
  • 63 篇 zhang lei
  • 45 篇 luc van gool
  • 40 篇 yang yi
  • 37 篇 loy chen change
  • 33 篇 xiaoou tang
  • 33 篇 li stan z.
  • 33 篇 qi tian
  • 32 篇 sun jian
  • 31 篇 liu yang
  • 31 篇 li fei-fei
  • 30 篇 chen chen
  • 30 篇 tian qi
  • 30 篇 pascal fua
  • 29 篇 darrell trevor
  • 28 篇 ying shan
  • 27 篇 li xin
  • 27 篇 vasconcelos nuno
  • 27 篇 hanqing lu

语言

  • 22,831 篇 英文
  • 50 篇 其他
  • 20 篇 中文
  • 5 篇 土耳其文
  • 2 篇 日文
检索条件"任意字段=1994 IEEE Computer-Society Conference on Computer Vision and Pattern Recognition"
22908 条 记 录,以下是4371-4380 订阅
排序:
Rethinking and Improving the Robustness of Image Style Transfer
Rethinking and Improving the Robustness of Image Style Trans...
收藏 引用
ieee/CVF conference on computer vision and pattern recognition (CVPR)
作者: Wang, Pei Li, Yijun Vasconcelos, Nuno UC La Jolla CA 92093 USA Adobe Res Los Altos CA USA
Extensive research in neural style transfer methods has shown that the correlation between features extracted by a pre-trained VGG network has a remarkable ability to capture the visual style of an image. Surprisingly... 详细信息
来源: 评论
Scattering Prompt Tuning: A Fine-tuned Foundation Model for SAR Object recognition
Scattering Prompt Tuning: A Fine-tuned Foundation Model for ...
收藏 引用
ieee computer society conference on computer vision and pattern recognition Workshops (CVPRW)
作者: Weilong Guo Shengyang Liv Jian Yang Key Laboratory of Space Utilization Chinese Academy of Sciences Technology and the Engineering Center for Space Utilization Chinese Academy of Sciences University of Chinese Academy of Sciences
Synthetic Aperture Radar (SAR) serves as a vital tool in various earth observation applications, providing robust imaging under challenging weather conditions. While the fine-tuned foundation models excel in many down... 详细信息
来源: 评论
DIA: Diffusion based Inverse Network Attack on Collaborative Inference
DIA: Diffusion based Inverse Network Attack on Collaborative...
收藏 引用
ieee computer society conference on computer vision and pattern recognition Workshops (CVPRW)
作者: Dake Chen Shiduo Li Yuke Zhang Chenghao Li Souvik Kundu Peter A. Beerel University of Southern California Los Angeles USA Tsinghua University Beijing China Intel Labs San Diego USA
With the continuous expansion of neural networks in size and depth, and the growing popularity of machine learning as a service, collaborative inference systems present a promising approach for deploying models in res... 详细信息
来源: 评论
NTIRE 2023 Challenge on Light Field Image Super-Resolution: Dataset, Methods and Results
NTIRE 2023 Challenge on Light Field Image Super-Resolution: ...
收藏 引用
2023 ieee/CVF conference on computer vision and pattern recognition Workshops, CVPRW 2023
作者: Wang, Yingqian Wang, Longguang Liang, Zhengyu Yang, Jungang Timofte, Radu Guo, Yulan Jin, Kai Wei, Zeqiang Yang, Angulia Guo, Sha Gao, Mingzhi Zhou, Xiuzhuang Van Duong, Vinh Huu, Thuc Nguyen Yim, Jonghoon Jeon, Byeungwoo Liu, Yutong Cheng, Zhen Xiao, Zeyu Xu, Ruikang Xiong, Zhiwei Liu, Gaosheng Jin, Manchang Yue, Huanjing Yang, Jingyu Gao, Chen Zhang, Shuo Chang, Song Lin, Youfang Chao, Wentao Wang, Xuechun Wang, Guanghui Duan, Fuqing Xia, Wang Wang, Yan Xia, Peiqi Wang, Shunzhou Lu, Yao Cong, Ruixuan Sheng, Hao Yang, Da Chen, Rongshan Wang, Sizhe Cui, Zhenglong Chen, Yilei Lu, Yongjie Cai, Dongjun An, Ping Salem, Ahmed Ibrahem, Hatem Yagoub, Bilel Kang, Hyun-Soo Zeng, Zekai Wu, Heng National University of Defense Technology China Aviation University of Air Force China University of Würzburg Germany Eth Zürich Switzerland Sun Yat-sen University The Shenzhen Campus of Sun Yat-sen University China Bigo Technology Pte. Ltd. Singapore Smart Medical Innovation Lab Beijing University of Posts and Telecommunications China Global Explorer Ltd. Suzhou China National Engineering Research Center of Visual Technology School of Computer Science Peking University China School of Artificial Intelligence Beijing University of Posts and Telecommunications China Department of Electrical and Computer Engineering Sungkyunkwan University Korea Republic of University of Science and Technology of China China School of Electrical and Information Engineering Tianjin University China Beijing Key Lab of Traffic Data Analysis and Mining School of Computer and Information Technology Beijing Jiaotong University China Beijing Normal University China Toronto Metropolitan University Canada Beijing Institute of Technology China Shenzhen MSU-BIT University China State Key Laboratory of Virtual Reality Technology and Systems School of Computer Science and Engineering Beihang University China Beihang Hangzhou Innovation Institute Yuhang China Faculty of Applied Sciences Macao Polytechnic University China School of Communication and Information Engineering Shanghai University China School of Information and Communication Engineering Chungbuk National University Korea Republic of Guangdong University of Technology China
In this report, we summarize the first NTIRE challenge on light field (LF) image super-resolution (SR), which aims at super-resolving LF images under the standard bicubic degradation with a magnification factor of 4. ... 详细信息
来源: 评论
Mixed-Privacy Forgetting in Deep Networks
Mixed-Privacy Forgetting in Deep Networks
收藏 引用
ieee/CVF conference on computer vision and pattern recognition (CVPR)
作者: Golatkar, Aditya Achille, Alessandro Ravichandran, Avinash Polito, Marzia Soatto, Stefano Amazon Web Serv Seattle WA 98109 USA Univ Calif Los Angeles Los Angeles CA 90024 USA
We show that the influence of a subset of the training samples can be removed - or "forgotten" - from the weights of a network trained on large-scale image classification tasks, and we provide strong computa... 详细信息
来源: 评论
Pulsar: Efficient Sphere-based Neural Rendering
Pulsar: Efficient Sphere-based Neural Rendering
收藏 引用
ieee/CVF conference on computer vision and pattern recognition (CVPR)
作者: Lassner, Christoph Zollhofer, Michael Facebook Real Labs Redmond WA 98052 USA
We propose Pulsar, an efficient sphere-based differentiable rendering module that is orders of magnitude faster than competing techniques, modular, and easy-to-use due to its tight integration with PyTorch. Differenti... 详细信息
来源: 评论
CLCC: Contrastive Learning for Color Constancy
CLCC: Contrastive Learning for Color Constancy
收藏 引用
ieee/CVF conference on computer vision and pattern recognition (CVPR)
作者: Yi-Chen Lo Chia-Che Chang Hsuan-Chao Chiu Yu-Hao Huang Chia-Ping Chen Yu-Lin Chang Jou, Kevin MediaTek Inc Hsinchu Taiwan
In this paper;we present CLCC, a novel contrastive learning framework for color constancy. Contrastive learning has been applied for learning high-quality visual representations for image classification. One key aspec... 详细信息
来源: 评论
Exploring Data-Efficient 3D Scene Understanding with Contrastive Scene Contexts
Exploring Data-Efficient 3D Scene Understanding with Contras...
收藏 引用
ieee/CVF conference on computer vision and pattern recognition (CVPR)
作者: Hou, Ji Graham, Benjamin Niesner, Matthias Xie, Saining Tech Univ Munich Munich Germany Facebook AI Res Menlo Pk CA USA
The rapid progress in 3D scene understanding has come with growing demand for data;however, collecting and annotating 3D scenes (e.g. point clouds) are notoriously hard. For example, the number of scenes (e.g. indoor ... 详细信息
来源: 评论
Enhancing the Transferability of Adversarial Attacks through Variance Tuning
Enhancing the Transferability of Adversarial Attacks through...
收藏 引用
ieee/CVF conference on computer vision and pattern recognition (CVPR)
作者: Wang, Xiaosen He, Kun Huazhong Univ Sci & Technol Sch Comp Sci & Technol Wuhan Peoples R China
Deep neural networks are vulnerable to adversarial examples that mislead the models with imperceptible perturbations. Though adversarial attacks have achieved incredible success rates in the white-box setting, most ex... 详细信息
来源: 评论
ChallenCap: Monocular 3D Capture of Challenging Human Performances using Multi-Modal References
ChallenCap: Monocular 3D Capture of Challenging Human Perfor...
收藏 引用
ieee/CVF conference on computer vision and pattern recognition (CVPR)
作者: He, Yannan Pang, Anqi Chen, Xin Liang, Han Wu, Minye Ma, Yuexin Xu, Lan ShanghaiTech Univ Shanghai Peoples R China Shanghai Engn Res Ctr Intelligent Vis & Imaging Shanghai Peoples R China
Capturing challenging human motions is critical for numerous applications, but it suffers from complex motion patterns and severe self-occlusion under the monocular setting. In this paper, we propose ChallenCap - a te... 详细信息
来源: 评论