咨询与建议

限定检索结果

文献类型

  • 22,771 篇 会议
  • 112 篇 期刊文献
  • 3 册 图书

馆藏范围

  • 22,885 篇 电子文献
  • 1 种 纸本馆藏

日期分布

学科分类号

  • 13,398 篇 工学
    • 10,880 篇 计算机科学与技术...
    • 3,450 篇 软件工程
    • 2,430 篇 机械工程
    • 1,721 篇 光学工程
    • 1,010 篇 控制科学与工程
    • 998 篇 电气工程
    • 761 篇 信息与通信工程
    • 393 篇 仪器科学与技术
    • 337 篇 生物工程
    • 257 篇 生物医学工程(可授...
    • 215 篇 电子科学与技术(可...
    • 113 篇 化学工程与技术
    • 112 篇 安全科学与工程
    • 98 篇 测绘科学与技术
    • 92 篇 交通运输工程
    • 86 篇 建筑学
    • 82 篇 土木工程
  • 3,362 篇 医学
    • 3,348 篇 临床医学
    • 79 篇 基础医学(可授医学...
  • 3,250 篇 理学
    • 1,953 篇 物理学
    • 1,664 篇 数学
    • 567 篇 统计学(可授理学、...
    • 484 篇 生物学
    • 245 篇 系统科学
    • 109 篇 化学
  • 506 篇 管理学
    • 299 篇 图书情报与档案管...
    • 219 篇 管理科学与工程(可...
    • 75 篇 工商管理
  • 252 篇 艺术学
    • 252 篇 设计学(可授艺术学...
  • 62 篇 法学
    • 59 篇 社会学
  • 40 篇 农学
  • 25 篇 教育学
  • 19 篇 经济学
  • 11 篇 军事学
  • 3 篇 文学

主题

  • 10,126 篇 computer vision
  • 4,008 篇 pattern recognit...
  • 2,900 篇 training
  • 1,958 篇 computational mo...
  • 1,792 篇 cameras
  • 1,758 篇 visualization
  • 1,485 篇 shape
  • 1,466 篇 image segmentati...
  • 1,447 篇 feature extracti...
  • 1,412 篇 three-dimensiona...
  • 1,288 篇 robustness
  • 1,169 篇 computer archite...
  • 1,144 篇 layout
  • 1,142 篇 computer science
  • 1,134 篇 semantics
  • 1,071 篇 object detection
  • 1,043 篇 conferences
  • 1,009 篇 benchmark testin...
  • 967 篇 codes
  • 810 篇 face recognition

机构

  • 135 篇 univ sci & techn...
  • 118 篇 univ chinese aca...
  • 118 篇 chinese univ hon...
  • 110 篇 carnegie mellon ...
  • 99 篇 tsinghua univers...
  • 98 篇 microsoft resear...
  • 94 篇 swiss fed inst t...
  • 92 篇 zhejiang univ pe...
  • 82 篇 university of sc...
  • 81 篇 zhejiang univers...
  • 78 篇 university of ch...
  • 77 篇 shanghai ai lab ...
  • 72 篇 shanghai jiao to...
  • 68 篇 microsoft res as...
  • 65 篇 national laborat...
  • 65 篇 alibaba grp peop...
  • 64 篇 tsinghua univ pe...
  • 63 篇 adobe research
  • 60 篇 peking univ peop...
  • 59 篇 peng cheng labor...

作者

  • 78 篇 van gool luc
  • 72 篇 timofte radu
  • 63 篇 zhang lei
  • 45 篇 luc van gool
  • 40 篇 yang yi
  • 37 篇 loy chen change
  • 33 篇 li stan z.
  • 33 篇 qi tian
  • 32 篇 xiaoou tang
  • 32 篇 sun jian
  • 31 篇 liu yang
  • 31 篇 li fei-fei
  • 30 篇 chen chen
  • 30 篇 tian qi
  • 30 篇 pascal fua
  • 29 篇 darrell trevor
  • 28 篇 ying shan
  • 27 篇 li xin
  • 27 篇 vasconcelos nuno
  • 27 篇 hanqing lu

语言

  • 22,824 篇 英文
  • 35 篇 其他
  • 20 篇 中文
  • 5 篇 土耳其文
  • 2 篇 日文
检索条件"任意字段=1994 IEEE Computer-Society Conference on Computer Vision and Pattern Recognition"
22886 条 记 录,以下是4731-4740 订阅
排序:
Face recognition using deep learning feature injection: An accurate hybrid network combining neural networks based on feature extraction with convolutional neural network  48
Face recognition using deep learning feature injection: An a...
收藏 引用
48th Latin American computer conference (CLEI)
作者: Sisco, Yilber J. Carmona, Rhadames Univ Cent Venezuela Escuela Comp Ctr Comp Graf Caracas Venezuela
In this work we evaluate, compare and combine several face recognition models. Three multi-layer neural networks are trained with different descriptors: Histograms of Gradient Orientation (HOG), Scale Invariant Featur... 详细信息
来源: 评论
Unpaired Image-to-Image Translation via Latent Energy Transport
Unpaired Image-to-Image Translation via Latent Energy Transp...
收藏 引用
ieee/CVF conference on computer vision and pattern recognition (CVPR)
作者: Zhao, Yang Chen, Changyou Univ Buffalo SUNY Buffalo NY 14260 USA
Image-to-image translation aims to preserve source contents while translating to discriminative target styles between two visual domains. Most works apply adversarial learning in the ambient image space, which could b... 详细信息
来源: 评论
Soft-IntroVAE: Analyzing and Improving the Introspective Variational Autoencoder
Soft-IntroVAE: Analyzing and Improving the Introspective Var...
收藏 引用
ieee/CVF conference on computer vision and pattern recognition (CVPR)
作者: Daniel, Tal Tamar, Aviv Technion Dept Elect Engn Haifa Israel
The recently introduced introspective variational autoencoder (IntroVAE) exhibits outstanding image generations, and allows for amortized inference using an image encoder. The main idea in IntroVAE is to train a VAE a... 详细信息
来源: 评论
Feature Decomposition and Reconstruction Learning for Effective Facial Expression recognition
Feature Decomposition and Reconstruction Learning for Effect...
收藏 引用
ieee/CVF conference on computer vision and pattern recognition (CVPR)
作者: Ruan, Delian Yan, Yan Lai, Shenqi Chai, Zhenhua Shen, Chunhua Wang, Hanzi Xiamen Univ Xiamen Peoples R China Meituan Vis Intelligence Ctr Beijing Peoples R China Univ Adelaide Adelaide SA Australia
In this paper, we propose a novel Feature Decomposition and Reconstruction Learning (FDRL) method for effective facial expression recognition. We view the expression information as the combination of the shared inform... 详细信息
来源: 评论
Multi-modal Aerial View Image Challenge: Translation from Synthetic Aperture Radar to Electro-Optical Domain Results - PBVS 2023
Multi-modal Aerial View Image Challenge: Translation from Sy...
收藏 引用
ieee computer society conference on computer vision and pattern recognition Workshops (CVPRW)
作者: Spencer Low Oliver Nina Angel D. Sappa Erik Blasch Nathan Inkawhich Brigham Young University Provo Utah Air Force Research Laboratory Dayton OH ESPOL Polytechnic University Ecuador Computer Vision Center Spain Air Force Research Laboratory Arlington VA Air Force Research Laboratory Rome NY
This paper unveils the discoveries and outcomes of the inaugural iteration of the Multi-modal Aerial View Image Challenge (MAVIC) aimed at image translation. The primary objective of this competition is to stimulate r...
来源: 评论
Learning a Proposal Classifier for Multiple Object Tracking
Learning a Proposal Classifier for Multiple Object Tracking
收藏 引用
ieee/CVF conference on computer vision and pattern recognition (CVPR)
作者: Dai, Peng Weng, Renliang Choi, Wongun Zhang, Changshui He, Zhangping Ding, Wei Tsinghua Univ Beijing Peoples R China Aibee Inc Beijing Peoples R China
The recent trend in multiple object tracking (MOT) is heading towards leveraging deep learning to boost the tracking performance. However, it is not trivial to solve the data-association problem in an end-to-end fashi... 详细信息
来源: 评论
Semantic Image Matting
Semantic Image Matting
收藏 引用
ieee/CVF conference on computer vision and pattern recognition (CVPR)
作者: Sun, Yanan Tang, Chi-Keung Tai, Yu-Wing HKUST Hong Kong Peoples R China Kuaishou Technol Beijing Peoples R China
Natural image matting separates the foreground from background in fractional occupancy which can be caused by highly transparent objects, complex foreground (e.g., net or tree), and/or objects containing very fine det... 详细信息
来源: 评论
3D-MAN: 3D Multi-frame Attention Network for Object Detection
3D-MAN: 3D Multi-frame Attention Network for Object Detectio...
收藏 引用
ieee/CVF conference on computer vision and pattern recognition (CVPR)
作者: Yang, Zetong Zhou, Yin Chen, Zhifeng Ngiam, Jiquan Chinese Univ Hong Kong Hong Kong Peoples R China Waymo LLC Mountain View CA USA Google Res Brain Team Mountain View CA USA
3D object detection is an important module in autonomous driving and robotics. However, many existing methods focus on using single frames to perform 3D detection, and do not fully utilize information from multiple fr... 详细信息
来源: 评论
M3P: Learning Universal Representations via Multitask Multilingual Multimodal Pre-training
M<SUP>3</SUP>P: Learning Universal Representations via Multi...
收藏 引用
ieee/CVF conference on computer vision and pattern recognition (CVPR)
作者: Ni, Minheng Huang, Haoyang Su, Lin Cui, Edward Bharti, Taroon Wang, Lijuan Zhang, Dongdong Duan, Nan Harbin Inst Technol Res Ctr Social Comp & Informat Retrieval Harbin Peoples R China Microsoft Res Asia Nat Language Comp Shanghai Peoples R China Microsoft Bing Multimedia Team Shanghai Peoples R China Microsoft Cloud AI Redmond WA USA
We present (MP)-P-3, a Multitask Multilingual Multimodal Pre-trained model that combines multilingual pre-training and multimodal pre-training into a unified framework via multitask pre-training. Our goal is to learn ... 详细信息
来源: 评论
Unsupervised Learning of Depth and Depth-of-Field Effect from Natural Images with Aperture Rendering Generative Adversarial Networks
Unsupervised Learning of Depth and Depth-of-Field Effect fro...
收藏 引用
ieee/CVF conference on computer vision and pattern recognition (CVPR)
作者: Kaneko, Takuhiro NTT Corp NTT Commun Sci Labs Tokyo Japan
Understanding the 3D world from 2D projected natural images is a fundamental challenge in computer vision and graphics. Recently, an unsupervised learning approach has garnered considerable attention owing to its adva... 详细信息
来源: 评论