咨询与建议

限定检索结果

文献类型

  • 68 篇 会议
  • 13 篇 期刊文献

馆藏范围

  • 81 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 76 篇 工学
    • 74 篇 计算机科学与技术...
    • 13 篇 软件工程
    • 5 篇 信息与通信工程
    • 4 篇 生物工程
    • 2 篇 化学工程与技术
    • 2 篇 生物医学工程(可授...
    • 1 篇 电气工程
    • 1 篇 电子科学与技术(可...
    • 1 篇 控制科学与工程
    • 1 篇 土木工程
  • 16 篇 理学
    • 11 篇 数学
    • 8 篇 生物学
    • 3 篇 系统科学
    • 2 篇 物理学
    • 2 篇 化学
    • 1 篇 地球物理学
    • 1 篇 地质学
    • 1 篇 统计学(可授理学、...
  • 6 篇 管理学
    • 5 篇 图书情报与档案管...
    • 1 篇 管理科学与工程(可...
  • 3 篇 法学
    • 3 篇 社会学
  • 2 篇 医学
    • 2 篇 基础医学(可授医学...
    • 2 篇 临床医学
    • 2 篇 药学(可授医学、理...

主题

  • 5 篇 supervised learn...
  • 4 篇 recursive neural...
  • 3 篇 deep learning
  • 3 篇 neural networks
  • 3 篇 face recognition
  • 3 篇 pattern recognit...
  • 3 篇 feature extracti...
  • 2 篇 vision transform...
  • 2 篇 multi-label clas...
  • 2 篇 mixture modeling
  • 2 篇 weighting of dat...
  • 2 篇 semiconductor ma...
  • 2 篇 pattern classifi...
  • 2 篇 human computer i...
  • 2 篇 graph edit dista...
  • 2 篇 feed-forward neu...
  • 2 篇 polynomial appro...
  • 2 篇 class imbalance
  • 2 篇 learning prefere...
  • 2 篇 time series fore...

机构

  • 5 篇 concordia univ d...
  • 4 篇 univ ulm inst ne...
  • 3 篇 univ jaume 1 dep...
  • 2 篇 univ london birk...
  • 2 篇 institute of neu...
  • 2 篇 multimedia univ ...
  • 2 篇 institute for in...
  • 2 篇 helsinki univ te...
  • 2 篇 institute of neu...
  • 2 篇 univ paris 06 la...
  • 2 篇 univ hosp ulm de...
  • 2 篇 ctr pattern regc...
  • 2 篇 concordia univ d...
  • 2 篇 univ toulouse 3 ...
  • 2 篇 univ patras upai...
  • 2 篇 univ ulm dept ne...
  • 2 篇 institute of com...
  • 2 篇 univ catholique ...
  • 2 篇 univ siena dipar...
  • 2 篇 ucl dept comp sc...

作者

  • 12 篇 schwenker friedh...
  • 5 篇 trentin edmondo
  • 5 篇 hernandez-espino...
  • 5 篇 fernandez-redond...
  • 5 篇 torres-sospedra ...
  • 4 篇 riesen kaspar
  • 4 篇 palm guenther
  • 4 篇 kestler hans a.
  • 3 篇 krzyzak adam
  • 3 篇 scherer stefan
  • 2 篇 granger eric
  • 2 篇 piccinini f
  • 2 篇 pudil p
  • 2 篇 frasconi p
  • 2 篇 ziou d
  • 2 篇 simon g
  • 2 篇 inesta jm
  • 2 篇 krzyzak a
  • 2 篇 brown m
  • 2 篇 michel-sendis c

语言

  • 81 篇 英文
检索条件"任意字段=1st IAPR TC3 Workshop on Artificial Neural Networks in Pattern Recognition"
81 条 记 录,以下是1-10 订阅
排序:
Fusion of multiple fingerprint matchers by single-layer perceptron with class-separation loss function
收藏 引用
pattern recognition LETTERS 2005年 第12期26卷 1830-1839页
作者: Marcialis, GL Roli, F Univ Cagliari Dept Elect & Elect Engn I-09123 Cagliari Italy
In this paper, a perception-based algorithm for fusion of multiple fingerprint matchers is presented. The person to be identified submits to the personal authentication system her/his fingerprint and claimed identity.... 详细信息
来源: 评论
Probabilistic neural network playing and learning Tic-Tac-Toe
Probabilistic neural network playing and learning Tic-Tac-To...
收藏 引用
1st iapr tc3 workshop on artificial neural networks in pattern recognition
作者: Grim, J Somol, P Pudil, P Acad Sci Czech Republic Inst Informat Theory & Automat CZ-18208 Prague Czech Republic
A probabilistic neural network is applied as a tool to approximate the statistical evaluation function for a simple version of the game Tic-Tac-Toe. We solve the problem by a sequential estimation of the underlying di... 详细信息
来源: 评论
Wide coverage natural language processing using kernel methods and neural networks for structured data
Wide coverage natural language processing using kernel metho...
收藏 引用
1st iapr tc3 workshop on artificial neural networks in pattern recognition
作者: Menchetti, S Costa, F Frasconi, P Pontil, M Univ Florence Dept Comp Sci & Syst I-50139 Florence Italy UCL Dept Comp Sci London WC1E 6BT England
Convolution kernels and recursive neural networks are both suitable approaches for supervised learning when the input is a discrete structure like a labeled tree or graph. We compare these techniques in two natural la... 详细信息
来源: 评论
Recursive neural networks learn to localize faces
Recursive neural networks learn to localize faces
收藏 引用
1st iapr tc3 workshop on artificial neural networks in pattern recognition
作者: Bianchini, M Maggini, M Sarti, L Scarselli, F Univ Siena Dipartimento Ingn Informaz I-53100 Siena Italy
Localizing faces in images is a difficult task, and represents the first step towards the solution of the face recognition problem. Moreover, devising an effective face detection method can provide some suggestions to... 详细信息
来源: 评论
Probabilistic neural network playing and learning Tic-Tac-Toe
收藏 引用
pattern recognition LETTERS 2005年 第12期26卷 1866-1873页
作者: Grim, J Somol, P Pudil, P Acad Sci Czech Republic Inst Informat Theory & Automat CZ-18208 Prague Czech Republic
A probabilistic neural network is applied as a tool to approximate the statistical evaluation function for a simple version of the game Tic-Tac-Toe. We solve the problem by a sequential estimation of the underlying di... 详细信息
来源: 评论
Sign-based learning schemes for pattern classification
Sign-based learning schemes for pattern classification
收藏 引用
1st iapr tc3 workshop on artificial neural networks in pattern recognition
作者: Anastasiadis, AD Magoulas, GD Vrahatis, MN Univ London Birkbeck Coll Sch Comp Sci & Informat Syst Knowledge Lab London WC1N 3QS England Univ London Birkbeck Coll Sch Comp Sci & Informat Syst London WC1E 7HX England Univ Patras UPAIRC Dept Math GR-26110 Patras Greece
This paper introduces a new class of sign-based training algorithms for neural networks that combine the sign-based updates of the Rprop algorithm with the composite nonlinear Jacobi method. The theoretical foundation... 详细信息
来源: 评论
Using unsupervised learning of a finite Dirichlet mixture model to improve pattern recognition applications
Using unsupervised learning of a finite Dirichlet mixture mo...
收藏 引用
1st iapr tc3 workshop on artificial neural networks in pattern recognition
作者: Bouguila, N Ziou, D Univ Sherbrooke Fac Sci Dept Informat Sherbrooke PQ J1K 2R1 Canada
Mixture modeling is the problem of identifying and modeling components in a given set of data. Gaussians are widely used in mixture modeling. At the same time, other models such as Dirichlet distributions have not rec... 详细信息
来源: 评论
Polyphonic monotimbral music transcription using dynamic networks
Polyphonic monotimbral music transcription using dynamic net...
收藏 引用
1st iapr tc3 workshop on artificial neural networks in pattern recognition
作者: Pertusa, A Inesta, JM Univ Alicante Dept Lenguajes & Sistemas Informat E-03080 Alicante Spain
The automatic extraction of the notes that were played in a digital musical signal (automatic music transcription) is an open problem. A number of techniques have been applied to solve it without concluding results. T... 详细信息
来源: 评论
Time series forecasting: Obtaining long term trends with self-organizing maps
Time series forecasting: Obtaining long term trends with sel...
收藏 引用
1st iapr tc3 workshop on artificial neural networks in pattern recognition
作者: Simon, G Lendasse, A Cottrell, M Fort, JC Verleysen, M Univ Catholique Louvain DICE Machine Learning grp B-1348 Louvain Belgium Helsinki Univ Technol Lab Comp & Informat Sci Neural Networks Res Ctr FIN-02015 Espoo Finland Univ Paris 01 CNRS UMR 8595 Samos Matisse F-75634 Paris France Univ Toulouse 3 CNRS C55830 Lab Stat & Probabil F-31062 Toulouse France
Kohonen self-organisation maps are a well know classification tool, commonly used in a wide variety of problems, but with limited applications in time series forecasting context. In this paper, we propose a forecastin... 详细信息
来源: 评论
Hybrid generative/discriminative classifier for unconstrained character recognition
Hybrid generative/discriminative classifier for unconstraine...
收藏 引用
1st iapr tc3 workshop on artificial neural networks in pattern recognition
作者: Prevost, L Oudot, L Moises, A Michel-Sendis, C Milgram, M Univ Paris 06 Lab Instruments & Syst Ile France Grp PARC F-75252 Paris France
Handwriting recognition for hand-held devices like PDAs requires very accurate and adaptive classifiers. It is such a complex classification problem that it is quite usual now to make co-operate several classification... 详细信息
来源: 评论