咨询与建议

限定检索结果

文献类型

  • 68 篇 会议
  • 13 篇 期刊文献

馆藏范围

  • 81 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 76 篇 工学
    • 74 篇 计算机科学与技术...
    • 13 篇 软件工程
    • 5 篇 信息与通信工程
    • 4 篇 生物工程
    • 2 篇 化学工程与技术
    • 2 篇 生物医学工程(可授...
    • 1 篇 电气工程
    • 1 篇 电子科学与技术(可...
    • 1 篇 控制科学与工程
    • 1 篇 土木工程
  • 16 篇 理学
    • 11 篇 数学
    • 8 篇 生物学
    • 3 篇 系统科学
    • 2 篇 物理学
    • 2 篇 化学
    • 1 篇 地球物理学
    • 1 篇 地质学
    • 1 篇 统计学(可授理学、...
  • 6 篇 管理学
    • 5 篇 图书情报与档案管...
    • 1 篇 管理科学与工程(可...
  • 3 篇 法学
    • 3 篇 社会学
  • 2 篇 医学
    • 2 篇 基础医学(可授医学...
    • 2 篇 临床医学
    • 2 篇 药学(可授医学、理...

主题

  • 5 篇 supervised learn...
  • 4 篇 recursive neural...
  • 3 篇 deep learning
  • 3 篇 neural networks
  • 3 篇 face recognition
  • 3 篇 pattern recognit...
  • 3 篇 feature extracti...
  • 2 篇 vision transform...
  • 2 篇 multi-label clas...
  • 2 篇 mixture modeling
  • 2 篇 weighting of dat...
  • 2 篇 semiconductor ma...
  • 2 篇 pattern classifi...
  • 2 篇 human computer i...
  • 2 篇 graph edit dista...
  • 2 篇 feed-forward neu...
  • 2 篇 polynomial appro...
  • 2 篇 class imbalance
  • 2 篇 learning prefere...
  • 2 篇 time series fore...

机构

  • 5 篇 concordia univ d...
  • 4 篇 univ ulm inst ne...
  • 3 篇 univ jaume 1 dep...
  • 2 篇 univ london birk...
  • 2 篇 institute of neu...
  • 2 篇 multimedia univ ...
  • 2 篇 institute for in...
  • 2 篇 helsinki univ te...
  • 2 篇 institute of neu...
  • 2 篇 univ paris 06 la...
  • 2 篇 univ hosp ulm de...
  • 2 篇 ctr pattern regc...
  • 2 篇 concordia univ d...
  • 2 篇 univ toulouse 3 ...
  • 2 篇 univ patras upai...
  • 2 篇 univ ulm dept ne...
  • 2 篇 institute of com...
  • 2 篇 univ catholique ...
  • 2 篇 univ siena dipar...
  • 2 篇 ucl dept comp sc...

作者

  • 12 篇 schwenker friedh...
  • 5 篇 trentin edmondo
  • 5 篇 hernandez-espino...
  • 5 篇 fernandez-redond...
  • 5 篇 torres-sospedra ...
  • 4 篇 riesen kaspar
  • 4 篇 palm guenther
  • 4 篇 kestler hans a.
  • 3 篇 krzyzak adam
  • 3 篇 scherer stefan
  • 2 篇 granger eric
  • 2 篇 piccinini f
  • 2 篇 pudil p
  • 2 篇 frasconi p
  • 2 篇 ziou d
  • 2 篇 simon g
  • 2 篇 inesta jm
  • 2 篇 krzyzak a
  • 2 篇 brown m
  • 2 篇 michel-sendis c

语言

  • 81 篇 英文
检索条件"任意字段=1st IAPR TC3 Workshop on Artificial Neural Networks in Pattern Recognition"
81 条 记 录,以下是11-20 订阅
排序:
Introducing an Atypical Loss: A Perceptual Metric Learning for Image Pairing  10th
Introducing an Atypical Loss: A Perceptual Metric Learning f...
收藏 引用
10th iapr tc3 workshop on artificial neural networks for pattern recognition (ANNPR)
作者: Dahmane, Mohamed CRIM Comp Res Inst Montreal Montreal PQ H3N 1M3 Canada
Recent works have shown an interest in comparing visually similar but semantically different instances. The paired Totally Looks Like (TLL) image dataset is a good example of visually similar paired images to figure o... 详细信息
来源: 评论
Typing plasmids with distributed sequence representation  9th
Typing plasmids with distributed sequence representation
收藏 引用
9th iapr tc3 International workshop on artificial neural networks in pattern recognition, ANNPR 2020
作者: Kaufmann, Moritz Schüle, Martin Smits, Theo H. M. Pothier, Joël F. Einsiedlerstr. 31 Wädenswil8820 Switzerland Schloss 1 Wädenswil8820 Switzerland
Multidrug resistant bacteria represent an increasing challenge for medicine. In bacteria, most antibiotic resistances are transmitted by plasmids. Therefore, it is important to study the spread of plasmids in detail i... 详细信息
来源: 评论
Using cnns to optimize numerical simulations in geotechnical engineering  9th
Using cnns to optimize numerical simulations in geotechnical...
收藏 引用
9th iapr tc3 International workshop on artificial neural networks in pattern recognition, ANNPR 2020
作者: Wolf, Beat Donzallaz, Jonathan Jost, Colette Hayoz, Amanda Commend, stéphane Hennebert, Jean Kuonen, Pierre iCoSys University of Applied Sciences Western Switzerland Fribourg Switzerland iTEC University of Applied Sciences Western Switzerland Fribourg Switzerland
Deep excavations are today mainly designed by manually optimising the wall’s geometry, stiffness and strut or anchor layout. In order to better automate this process for sustained excavations, we are exploring the po... 详细信息
来源: 评论
Feature extraction: A time window analysis based on the x-ite pain database  9th
Feature extraction: A time window analysis based on the x-it...
收藏 引用
9th iapr tc3 International workshop on artificial neural networks in pattern recognition, ANNPR 2020
作者: Ricken, Tobias steinert, Adrian Bellmann, Peter Walter, steffen Schwenker, Friedhelm Institute of Neural Information Processing Ulm University James-Franck-Ring Ulm89081 Germany Department of Medical Psychology Ulm University Frauensteige 6 Ulm89075 Germany
In this work, we analyse different temporal feature extraction window approaches, in combination with short-time heat and electric pain stimuli. Thereby, we focus on the physiological signals of the Experimentally Ind... 详细信息
来源: 评论
Pain intensity recognition - an analysis of short-time sequences in a real-world scenario  9th
Pain intensity recognition - an analysis of short-time seque...
收藏 引用
9th iapr tc3 International workshop on artificial neural networks in pattern recognition, ANNPR 2020
作者: Bellmann, Peter Thiam, Patrick Schwenker, Friedhelm Institute of Neural Information Processing Ulm University James-Franck-Ring Ulm89081 Germany Institute of Medical Systems Biology Ulm University Albert-Einstein-Allee 11 Ulm89081 Germany
Pain intensity recognition still constitutes a challenging classification task. In this work, we focus on the physiological signals of the publicly available BioVid Heat Pain Database, which was collected at Ulm Unive... 详细信息
来源: 评论
A Refinement Algorithm for Deep Learning via Error-Driven Propagation of Target Outputs  8th
A Refinement Algorithm for Deep Learning via Error-Driven Pr...
收藏 引用
8th iapr tc3 workshop on artificial neural networks in pattern recognition (ANNPR)
作者: Laveglia, Vincenzo Trentin, Edmondo Univ Firenze DINFO Via S Marta 3 I-50139 Florence Italy Univ Siena DIISM Via Roma 56 I-53100 Siena Italy
Target propagation in deep neural networks aims at improving the learning process by determining target outputs for the hidden layers of the network. To date, this has been accomplished via gradient-descent or relying... 详细信息
来源: 评论
Manifold Learning Regression with Non-stationary Kernels  8th
Manifold Learning Regression with Non-stationary Kernels
收藏 引用
8th iapr tc3 workshop on artificial neural networks in pattern recognition (ANNPR)
作者: Kuleshov, Alexander Bernstein, Alexander Burnaev, Evgeny Skolkovo Inst Sci & Technol Skolkovo Innovat Ctr 3 Nobel St Moscow 121205 Russia
Nonlinear multi-output regression problem is to construct a predictive function which estimates an unknown smooth mapping from q-dimensional inputs to m-dimensional outputs based on a training data set consisting of g... 详细信息
来源: 评论
Learning neural Models for End-to-End Clustering  8th
Learning Neural Models for End-to-End Clustering
收藏 引用
8th iapr tc3 workshop on artificial neural networks in pattern recognition (ANNPR)
作者: Meier, Benjamin Bruno Elezi, Ismail Amirian, Mohammadreza Duerr, Oliver stadelmann, Thilo ZHAW Datalab Winterthur Switzerland Sch Engn Winterthur Switzerland ARGUS DATA INSIGHTS Schweiz AG Zurich Switzerland Ca Foscari Univ Venice Venice Italy Ulm Univ Inst Neural Informat Proc Ulm Germany HTWG Konstanz Inst Opt Syst Constance Germany
We propose a novel end-to-end neural network architecture that, once trained, directly outputs a probabilistic clustering of a batch of input examples in one pass. It estimates a distribution over the number of cluste... 详细信息
来源: 评论
F-Measure Curves for Visualizing Classifier Performance with Imbalanced Data  8th
F-Measure Curves for Visualizing Classifier Performance with...
收藏 引用
8th iapr tc3 workshop on artificial neural networks in pattern recognition (ANNPR)
作者: Soleymani, Roghayeh Granger, Eric Fumera, Giorgio Univ Quebec Ecole Technol Super Lab Imagerie Vis & Intelligence Artificielle Montreal PQ Canada Univ Cagliari Dept Elect & Elect Engn Pattern Recognit & Applicat Lab Cagliari Italy
Training classifiers using imbalanced data is a challenging problem in many real-world recognition applications due in part to the bias in performance that occur for: (1) classifiers that are often optimized and compa... 详细信息
来源: 评论
Time Series Classification in Reservoir-and Model-Space: A Comparison  7th
Time Series Classification in Reservoir-and Model-Space: A C...
收藏 引用
7th iapr tc3 workshop on artificial neural networks in pattern recognition (ANNPR)
作者: Aswolinskiy, Witali Reinhart, Rene Felix steil, Jochen Res Inst Cognit & Robot CoR Lab Univ Str 25 D-33615 Bielefeld Germany Fraunhofer Res Inst Mech Syst Design IEM Zukunftsmeile 1 D-33102 Paderborn Germany
Learning in the space of Echo state Network (ESN) output weights, i.e. model space, has achieved excellent results in time series classification, visualization and modelling. This work presents a systematic comparison... 详细信息
来源: 评论