咨询与建议

限定检索结果

文献类型

  • 68 篇 会议
  • 13 篇 期刊文献

馆藏范围

  • 81 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 76 篇 工学
    • 74 篇 计算机科学与技术...
    • 13 篇 软件工程
    • 5 篇 信息与通信工程
    • 4 篇 生物工程
    • 2 篇 化学工程与技术
    • 2 篇 生物医学工程(可授...
    • 1 篇 电气工程
    • 1 篇 电子科学与技术(可...
    • 1 篇 控制科学与工程
    • 1 篇 土木工程
  • 16 篇 理学
    • 11 篇 数学
    • 8 篇 生物学
    • 3 篇 系统科学
    • 2 篇 物理学
    • 2 篇 化学
    • 1 篇 地球物理学
    • 1 篇 地质学
    • 1 篇 统计学(可授理学、...
  • 6 篇 管理学
    • 5 篇 图书情报与档案管...
    • 1 篇 管理科学与工程(可...
  • 3 篇 法学
    • 3 篇 社会学
  • 2 篇 医学
    • 2 篇 基础医学(可授医学...
    • 2 篇 临床医学
    • 2 篇 药学(可授医学、理...

主题

  • 5 篇 supervised learn...
  • 4 篇 recursive neural...
  • 3 篇 deep learning
  • 3 篇 neural networks
  • 3 篇 face recognition
  • 3 篇 pattern recognit...
  • 3 篇 feature extracti...
  • 2 篇 vision transform...
  • 2 篇 multi-label clas...
  • 2 篇 mixture modeling
  • 2 篇 weighting of dat...
  • 2 篇 semiconductor ma...
  • 2 篇 pattern classifi...
  • 2 篇 human computer i...
  • 2 篇 graph edit dista...
  • 2 篇 feed-forward neu...
  • 2 篇 polynomial appro...
  • 2 篇 class imbalance
  • 2 篇 learning prefere...
  • 2 篇 time series fore...

机构

  • 5 篇 concordia univ d...
  • 4 篇 univ ulm inst ne...
  • 3 篇 univ jaume 1 dep...
  • 2 篇 univ london birk...
  • 2 篇 institute of neu...
  • 2 篇 multimedia univ ...
  • 2 篇 institute for in...
  • 2 篇 helsinki univ te...
  • 2 篇 institute of neu...
  • 2 篇 univ paris 06 la...
  • 2 篇 univ hosp ulm de...
  • 2 篇 ctr pattern regc...
  • 2 篇 concordia univ d...
  • 2 篇 univ toulouse 3 ...
  • 2 篇 univ patras upai...
  • 2 篇 univ ulm dept ne...
  • 2 篇 institute of com...
  • 2 篇 univ catholique ...
  • 2 篇 univ siena dipar...
  • 2 篇 ucl dept comp sc...

作者

  • 12 篇 schwenker friedh...
  • 5 篇 trentin edmondo
  • 5 篇 hernandez-espino...
  • 5 篇 fernandez-redond...
  • 5 篇 torres-sospedra ...
  • 4 篇 riesen kaspar
  • 4 篇 palm guenther
  • 4 篇 kestler hans a.
  • 3 篇 krzyzak adam
  • 3 篇 scherer stefan
  • 2 篇 granger eric
  • 2 篇 piccinini f
  • 2 篇 pudil p
  • 2 篇 frasconi p
  • 2 篇 ziou d
  • 2 篇 simon g
  • 2 篇 inesta jm
  • 2 篇 krzyzak a
  • 2 篇 brown m
  • 2 篇 michel-sendis c

语言

  • 81 篇 英文
检索条件"任意字段=1st IAPR TC3 Workshop on Artificial Neural Networks in Pattern Recognition"
81 条 记 录,以下是11-20 订阅
排序:
Polyphonic monotimbral music transcription using dynamic networks
收藏 引用
pattern recognition LETTERS 2005年 第12期26卷 1809-1818页
作者: Pertusa, A Inesta, JM Univ Alicante Dept Lenguajes & Sistemas Informat E-03080 Alicante Spain
The automatic extraction of the notes that were played in a digital musical signal (automatic music transcription) is an open problem. A number of techniques have been applied to solve it without concluding results. T... 详细信息
来源: 评论
Recursive neural networks learn to localize faces
收藏 引用
pattern recognition LETTERS 2005年 第12期26卷 1885-1895页
作者: Bianchini, M Maggini, M Sarti, L Scarselli, F Univ Siena Dipartimento Ingn Informaz I-53100 Siena Italy
Localizing faces in images is a difficult task, and represents the first step towards the solution of the face recognition problem. Moreover, devising an effective face detection method can provide some suggestions to... 详细信息
来源: 评论
Sign-based learning schemes for pattern classification
收藏 引用
pattern recognition LETTERS 2005年 第12期26卷 1926-1936页
作者: Anastasiadis, AD Magoulas, GD Vrahatis, MN Univ London Birkbeck Coll Sch Comp Sci & Informat Syst Knowledge Lab London WC1N 3QS England Univ London Birkbeck Coll Sch Comp Sci & Informat Syst London WC1E 7HX England Univ Patras UPAIRC Dept Math GR-26110 Patras Greece
This paper introduces a new class of sign-based training algorithms for neural networks that combine the sign-based updates of the Rprop algorithm with the composite nonlinear Jacobi method. The theoretical foundation... 详细信息
来源: 评论
Unsupervised spatial pattern classification of electrical-wafer-sorting maps in semiconductor manufacturing
Unsupervised spatial pattern classification of electrical-wa...
收藏 引用
1st iapr tc3 workshop on artificial neural networks in pattern recognition
作者: Di Palma, F De Nicolao, G Miraglia, G Pasquinetti, E Piccinini, F Univ Pavia Dipartimento Informat & Sistemist I-27100 Pavia Italy STMicroelect I-20041 Agrate Brianza Italy
in semiconductor manufacturing, the spatial pattern of failed devices in a wafer can give precious hints on which step of the process is responsible for the failures. In the literature, Kohonen's Self Organizing F... 详细信息
来源: 评论
Exploratory basis pursuit classification
Exploratory basis pursuit classification
收藏 引用
1st iapr tc3 workshop on artificial neural networks in pattern recognition
作者: Brown, M Costen, NP Univ Manchester Control Syst Ctr Sch Elect & Elect Engn Manchester M60 1QD Lancs England Manchester Metropolitan Univ Dept Comp & Math Manchester Lancs England
Feature selection is a fundamental process in many classifier design problems. However, it is NP-complete and approximate approaches often require requires extensive exploration and evaluation. This paper describes a ... 详细信息
来源: 评论
Wide coverage natural language processing using kernel methods and neural networks for structured data
收藏 引用
pattern recognition LETTERS 2005年 第12期26卷 1896-1906页
作者: Menchetti, S Costa, F Frasconi, P Pontil, M Univ Florence Dept Comp Sci & Syst I-50139 Florence Italy UCL Dept Comp Sci London WC1E 6BT England
Convolution kernels and recursive neural networks are both suitable approaches for supervised learning when the input is a discrete structure like a labeled tree or graph. We compare these techniques in two natural la... 详细信息
来源: 评论
Time series forecasting: Obtaining long term trends with self-organizing maps
收藏 引用
pattern recognition LETTERS 2005年 第12期26卷 1795-1808页
作者: Simon, G Lendasse, A Cottrell, M Fort, JC Verleysen, M Univ Catholique Louvain DICE Machine Learning grp B-1348 Louvain Belgium Helsinki Univ Technol Lab Comp & Informat Sci Neural Networks Res Ctr FIN-02015 Espoo Finland Univ Paris 01 CNRS UMR 8595 Samos Matisse F-75634 Paris France Univ Toulouse 3 CNRS C55830 Lab Stat & Probabil F-31062 Toulouse France
Kohonen self-organisation maps are a well know classification tool, commonly used in a wide variety of problems, but with limited applications in time series forecasting context. In this paper, we propose a forecastin... 详细信息
来源: 评论
An improved handwritten Chinese character recognition system using support vector machine
An improved handwritten Chinese character recognition system...
收藏 引用
1st iapr tc3 workshop on artificial neural networks in pattern recognition
作者: Dong, JX Krzyzak, A Suen, CY Ctr Pattern Regcognit & Machine Intelligence Montreal PQ H3G 1M8 Canada Concordia Univ Dept Comp Sci & Software Engn Montreal PQ H3G 1M8 Canada
This paper describes several techniques improving a Chinese character recognition system. Enhanced nonlinear normalization, feature extraction and tuning kernel parameters of support vector machine on a large data set... 详细信息
来源: 评论
Hybrid generative/discriminative classifier for unconstrained character recognition
收藏 引用
pattern recognition LETTERS 2005年 第12期26卷 1840-1848页
作者: Prevost, L Oudot, L Moises, A Michel-Sendis, C Milgram, M Univ Paris 06 Lab Instruments & Syst Ile France Grp PARC F-75252 Paris France
Handwriting recognition for hand-held devices like PDAs requires very accurate and adaptive classifiers. It is such a complex classification problem that it is quite usual now to make co-operate several classification... 详细信息
来源: 评论
Exploratory basis pursuit classification
收藏 引用
pattern recognition LETTERS 2005年 第12期26卷 1907-1915页
作者: Brown, M Costen, NP Univ Manchester Control Syst Ctr Sch Elect & Elect Engn Manchester M60 1QD Lancs England Manchester Metropolitan Univ Dept Comp & Math Manchester Lancs England
Feature selection is a fundamental process in many classifier design problems. However, it is NP-complete and approximate approaches often require requires extensive exploration and evaluation. This paper describes a ... 详细信息
来源: 评论