咨询与建议

限定检索结果

文献类型

  • 550 篇 会议
  • 28 篇 期刊文献
  • 7 册 图书

馆藏范围

  • 585 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 470 篇 工学
    • 425 篇 计算机科学与技术...
    • 199 篇 软件工程
    • 110 篇 电气工程
    • 67 篇 信息与通信工程
    • 45 篇 生物工程
    • 42 篇 生物医学工程(可授...
    • 26 篇 控制科学与工程
    • 20 篇 光学工程
    • 13 篇 仪器科学与技术
    • 11 篇 机械工程
    • 10 篇 化学工程与技术
    • 9 篇 交通运输工程
    • 8 篇 电子科学与技术(可...
    • 7 篇 土木工程
  • 140 篇 理学
    • 69 篇 数学
    • 56 篇 生物学
    • 33 篇 物理学
    • 24 篇 统计学(可授理学、...
    • 19 篇 系统科学
    • 8 篇 化学
  • 90 篇 管理学
    • 63 篇 图书情报与档案管...
    • 35 篇 管理科学与工程(可...
    • 19 篇 工商管理
  • 46 篇 医学
    • 36 篇 临床医学
    • 22 篇 基础医学(可授医学...
    • 13 篇 药学(可授医学、理...
    • 7 篇 特种医学
    • 6 篇 公共卫生与预防医...
  • 11 篇 法学
    • 9 篇 社会学
  • 11 篇 教育学
    • 10 篇 教育学
  • 8 篇 经济学
  • 6 篇 农学

主题

  • 74 篇 machine learning
  • 55 篇 data mining
  • 36 篇 pattern recognit...
  • 33 篇 deep learning
  • 20 篇 feature extracti...
  • 18 篇 artificial intel...
  • 16 篇 support vector m...
  • 15 篇 learning systems
  • 11 篇 image classifica...
  • 9 篇 training
  • 8 篇 neural networks
  • 8 篇 face recognition
  • 8 篇 manifold learnin...
  • 8 篇 supervised learn...
  • 7 篇 pattern classifi...
  • 7 篇 big data
  • 7 篇 clustering algor...
  • 7 篇 classification (...
  • 7 篇 machine learning...
  • 7 篇 data models

机构

  • 4 篇 ukrainian cathol...
  • 3 篇 harbin inst tech...
  • 3 篇 guilin univ elec...
  • 3 篇 fujian univ tech...
  • 3 篇 college of compu...
  • 3 篇 kunming univ col...
  • 3 篇 nanjing univ sci...
  • 3 篇 concordia univ d...
  • 2 篇 shanghai jiao to...
  • 2 篇 australian e-hea...
  • 2 篇 telangana hydera...
  • 2 篇 key lab data gov...
  • 2 篇 idiap ch-1920 ma...
  • 2 篇 department of ma...
  • 2 篇 univ toronto dep...
  • 2 篇 univ montreal di...
  • 2 篇 chitkara univers...
  • 2 篇 natl univ singap...
  • 2 篇 pattern analysis...
  • 2 篇 univ katolik ind...

作者

  • 3 篇 li junbao
  • 3 篇 maier andreas
  • 3 篇 bengio s
  • 3 篇 deepa r.
  • 3 篇 deng fei
  • 3 篇 pan jeng-shyang
  • 3 篇 hu cong
  • 3 篇 zhang daoqiang
  • 3 篇 amelio alessia
  • 3 篇 maier-hein klaus
  • 3 篇 he chunhui
  • 2 篇 vrahatis aristid...
  • 2 篇 jin zhong
  • 2 篇 collobert r
  • 2 篇 tax dmj
  • 2 篇 sharma r
  • 2 篇 cilia nicole dal...
  • 2 篇 fontanella franc...
  • 2 篇 genov r
  • 2 篇 stiefelhagen rai...

语言

  • 568 篇 英文
  • 12 篇 中文
  • 9 篇 其他
  • 1 篇 俄文
检索条件"任意字段=1st International Workshop on Machine Learning and Data Mining in Pattern Recognition"
585 条 记 录,以下是101-110 订阅
排序:
On the Usefulness of Similarity Based Projection Spaces for Transfer learning
收藏 引用
1st international workshop on Similarity-Based pattern recognition (SIMBAD)
作者: Morvant, Emilie Habrard, Amaury Ayache, stephane Aix Marseille Univ Lab Informat Fondamentale Marseille CNRS UMR 6166 F-13453 Marseille 13 France
Similarity functions are widely used in many machine learning or pattern recognition tasks. We consider here a recent framework for binary classification, proposed by Balcan et al., allowing to learn in a potentially ... 详细信息
来源: 评论
A Multi-Class Multi-Manifold learning Algorithm based on ISOMAP
A Multi-Class Multi-Manifold Learning Algorithm based on ISO...
收藏 引用
Chinese Conference on pattern recognition/1st CJK Joint workshop on pattern recognition
作者: Cheng, Qicai Wang, Hongyuan Feng, Yan Liu, Suolan Xue, Lei Jiangsu Polytech Univ Sch Informat Changzhou 213164 Peoples R China
The classical algorithm ISOMAP can find the intrinsic low-dimensional structures hidden in high-dimensional data uniformly distributed on or around a single manifold, but if the data are sampled from multi-class, each... 详细信息
来源: 评论
FUZZY CONTROLLERS IN NUCLEAR MATERIAL ACCOUNTING
收藏 引用
FUZZY SETS AND SYstEMS 1995年 第1期74卷 73-79页
作者: ZARDECKI, A Los Alamos National Laboratory MS E541 Los Alamos NM 87545 USA
Fuzzy controllers are applied to predicting and modeling a time series, with particular emphasis on anomaly detection in nuclear material inventory differences. As compared to neural networks, the fuzzy controllers ca... 详细信息
来源: 评论
Process mining workshops  1
Process Mining Workshops
收藏 引用
丛书名: Lecture Notes in Business Information Processing
1000年
作者: Andrea Delgado Tijs Slaats
This book constitutes the revised accepted papers of several workshops which were held in conjunction with the 6th international Conference on Process mining, ICPM 2024, held in Lyngby, Denmark, during October 20... 详细信息
来源: 评论
Scaling large learning problems with hard parallel mixtures  1st
Scaling large learning problems with hard parallel mixtures
收藏 引用
1st international workshop on pattern recognition with Support Vector machines
作者: Collobert, R Bengio, Y Bengio, S IDIAP CH-1920 Martigny Switzerland Univ Montreal DIRO Montreal PQ Canada
A challenge for statistical learning is to deal with large data sets, e.g. in data mining. The training time of ordinary Support Vector machines is at least quadratic, which raises a serious research challenge if we w... 详细信息
来源: 评论
Building statistical Language Models of Code
Building Statistical Language Models of Code
收藏 引用
1st international workshop on data Analysis patterns in Software Engineering (DAPSE)
作者: Schulam, Peter Rosenfeld, Roni Devanbu, Premkumar Carnegie Mellon Univ Language Technol Inst Pittsburgh PA 15213 USA Univ Calif Davis Dept Comp Sci Davis CA USA
We present the Source Code statistical Language Model data analysis pattern. statistical language models have been an enabling tool for a wide array of important language technologies. Speech recognition, machine tran... 详细信息
来源: 评论
Combining data Sources Nonlinearly for Cell Nucleus Classification of Renal Cell Carcinoma
收藏 引用
1st international workshop on Similarity-Based pattern recognition (SIMBAD)
作者: Gonen, Mehmet Ulas, Aydin Schueffler, Peter Castellani, Umberto Murino, Vittorio Aalto Univ Sch Sci Dept Informat & Comp Sci HIIT Espoo Finland Univ Verona Dept Comp Sci Verona Italy ETH Dept Comp Sci Zurich Switzerland IIT Genoa Italy
In kernel-based machine learning algorithms, we can learn a combination of different kernel functions in order to obtain a similarity measure that better matches the underlying problem instead of using a single fixed ... 详细信息
来源: 评论
MULTISENSOR INTEGRATION - AN AUTOMATIC FEATURE-SELECTION AND stATE IDENTIFICATION METHODOLOGY FOR TOOL WEAR EstIMATION
收藏 引用
COMPUTERS IN INDUstRY 1991年 第2-3期17卷 121-130页
作者: GUINEA, D RUIZ, A BARRIOS, LJ CSIC INST AUTOMAT INDE-28500 MADRIDSPAIN
Artificial systems obtain knowledge from the real world through sensors. The nature of the transducer, the location in space and the acquisition time must be considered to define the perceived state of the environment... 详细信息
来源: 评论
Advantage and Drawback of Support Vector machine Functionality  1
Advantage and Drawback of Support Vector Machine Functionali...
收藏 引用
1st international Conference on Computer, Communications, and Control Technology (I4CT)
作者: Karamizadeh, Sasan Abdullah, Shahidan M. Halimi, Mehran Shayan, Jafar Rajabi, Mohammad Javad UTM AIS Kuala Lumpur Malaysia
Support Vector machine(SVM) is one of the most efficient machine learning algorithms, which is mostly used for pattern recognition since its introduction in 1990s. SVMs vast variety of usage, such as face and speech r... 详细信息
来源: 评论
Image recommendation for Wikipedia articles  1
Image recommendation for Wikipedia articles
收藏 引用
1st Masters Symposium on Advances in data mining, machine learning, and Computer Vision, MS-AMLV 2019
作者: Onyshchak, Oleh Redi, Miriam Ukrainian Catholic University Lviv Ukraine Wikimedia Foundation London United Kingdom
Multimodal learning, which is simultaneous learning from different data sources such as audio, text, images, is a rapidly emerging field of machine learning. It is also considered as machine learning at the next upper... 详细信息
来源: 评论