咨询与建议

限定检索结果

文献类型

  • 550 篇 会议
  • 28 篇 期刊文献
  • 7 册 图书

馆藏范围

  • 585 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 470 篇 工学
    • 425 篇 计算机科学与技术...
    • 199 篇 软件工程
    • 110 篇 电气工程
    • 67 篇 信息与通信工程
    • 45 篇 生物工程
    • 42 篇 生物医学工程(可授...
    • 26 篇 控制科学与工程
    • 20 篇 光学工程
    • 13 篇 仪器科学与技术
    • 11 篇 机械工程
    • 10 篇 化学工程与技术
    • 9 篇 交通运输工程
    • 8 篇 电子科学与技术(可...
    • 7 篇 土木工程
  • 140 篇 理学
    • 69 篇 数学
    • 56 篇 生物学
    • 33 篇 物理学
    • 24 篇 统计学(可授理学、...
    • 19 篇 系统科学
    • 8 篇 化学
  • 90 篇 管理学
    • 63 篇 图书情报与档案管...
    • 35 篇 管理科学与工程(可...
    • 19 篇 工商管理
  • 46 篇 医学
    • 36 篇 临床医学
    • 22 篇 基础医学(可授医学...
    • 13 篇 药学(可授医学、理...
    • 7 篇 特种医学
    • 6 篇 公共卫生与预防医...
  • 11 篇 法学
    • 9 篇 社会学
  • 11 篇 教育学
    • 10 篇 教育学
  • 8 篇 经济学
  • 6 篇 农学

主题

  • 74 篇 machine learning
  • 55 篇 data mining
  • 36 篇 pattern recognit...
  • 33 篇 deep learning
  • 20 篇 feature extracti...
  • 18 篇 artificial intel...
  • 16 篇 support vector m...
  • 15 篇 learning systems
  • 11 篇 image classifica...
  • 9 篇 training
  • 8 篇 neural networks
  • 8 篇 face recognition
  • 8 篇 manifold learnin...
  • 8 篇 supervised learn...
  • 7 篇 pattern classifi...
  • 7 篇 big data
  • 7 篇 clustering algor...
  • 7 篇 classification (...
  • 7 篇 machine learning...
  • 7 篇 data models

机构

  • 4 篇 ukrainian cathol...
  • 3 篇 harbin inst tech...
  • 3 篇 guilin univ elec...
  • 3 篇 fujian univ tech...
  • 3 篇 college of compu...
  • 3 篇 kunming univ col...
  • 3 篇 nanjing univ sci...
  • 3 篇 concordia univ d...
  • 2 篇 shanghai jiao to...
  • 2 篇 australian e-hea...
  • 2 篇 telangana hydera...
  • 2 篇 key lab data gov...
  • 2 篇 idiap ch-1920 ma...
  • 2 篇 department of ma...
  • 2 篇 univ toronto dep...
  • 2 篇 univ montreal di...
  • 2 篇 chitkara univers...
  • 2 篇 natl univ singap...
  • 2 篇 pattern analysis...
  • 2 篇 univ katolik ind...

作者

  • 3 篇 li junbao
  • 3 篇 maier andreas
  • 3 篇 bengio s
  • 3 篇 deepa r.
  • 3 篇 deng fei
  • 3 篇 pan jeng-shyang
  • 3 篇 hu cong
  • 3 篇 zhang daoqiang
  • 3 篇 amelio alessia
  • 3 篇 maier-hein klaus
  • 3 篇 he chunhui
  • 2 篇 vrahatis aristid...
  • 2 篇 jin zhong
  • 2 篇 collobert r
  • 2 篇 tax dmj
  • 2 篇 sharma r
  • 2 篇 cilia nicole dal...
  • 2 篇 fontanella franc...
  • 2 篇 genov r
  • 2 篇 stiefelhagen rai...

语言

  • 568 篇 英文
  • 12 篇 中文
  • 9 篇 其他
  • 1 篇 俄文
检索条件"任意字段=1st International Workshop on Machine Learning and Data Mining in Pattern Recognition"
585 条 记 录,以下是111-120 订阅
排序:
machine learning models and methods aspects of processing unstructured data  1
Machine learning models and methods aspects of processing un...
收藏 引用
1st international workshop on Bioinformatics and Applied Information Technologies, BAIT 2024
作者: Bryk, Oleksandr Mudryk, Ivan Holubovskyi, Mykhailo stoianov, Yurii Ternopil Ivan Puluj National Technical University 56 Ruska str. Ternopil46001 Ukraine
The ever-increasing amount of unstructured data, including text, images, audio, and video, poses a serious challenge to traditional data mining techniques. machine learning (ML) offers powerful tools and techniques to... 详细信息
来源: 评论
Advantage and Drawback of Support Vector machine Functionality  1
Advantage and Drawback of Support Vector Machine Functionali...
收藏 引用
1st international Conference on Computer, Communications, and Control Technology (I4CT)
作者: Karamizadeh, Sasan Abdullah, Shahidan M. Halimi, Mehran Shayan, Jafar Rajabi, Mohammad Javad UTM AIS Kuala Lumpur Malaysia
Support Vector machine(SVM) is one of the most efficient machine learning algorithms, which is mostly used for pattern recognition since its introduction in 1990s. SVMs vast variety of usage, such as face and speech r... 详细信息
来源: 评论
Collecting Retail data Using a Deep learning Identification Experience  2nd
Collecting Retail Data Using a Deep Learning Identification ...
收藏 引用
2nd international workshop on Recent Advances in Digital Security: Biometrics and Forensics, BioFor 2019, 1st international workshop on pattern recognition for Cultural Heritage, PatReCH 2019, 1st international workshop eHealth in the Big data and Deep learning Era, e-BADLE 2019, international workshop on Deep Understanding Shopper Behaviors and Interactions in Intelligent Retail Environments, DEEPRETAIL 2019 and Industrial session held at the 20th international Conference on Image Analysis and Processing, ICIAP 2019
作者: La Porta, Salvatore Marconi, Fabrizio Lazzini, Isabella JEF Srl Civitanova Marche Italy Consumer Business Group Italia Huawei Milan Italy
The aim of the paper is to present a part of an architecture realized by Huawei, that propose the first Christmas tree endowed with artificial intelligence. Its ability is to identify facial expressions from images ac... 详细信息
来源: 评论
Scaling large learning problems with hard parallel mixtures  1st
Scaling large learning problems with hard parallel mixtures
收藏 引用
1st international workshop on pattern recognition with Support Vector machines
作者: Collobert, R Bengio, Y Bengio, S IDIAP CH-1920 Martigny Switzerland Univ Montreal DIRO Montreal PQ Canada
A challenge for statistical learning is to deal with large data sets, e.g. in data mining. The training time of ordinary Support Vector machines is at least quadratic, which raises a serious research challenge if we w... 详细信息
来源: 评论
Proceeding of the 1st international workshop on Image mining Theory and Application, IMTA 2008 - In Conjuction with VIISIGRAPP 2008
Proceeding of the 1st International Workshop on Image Mining...
收藏 引用
1st international workshop on Image mining Theory and Applications, IMTA 2008 - In Conjunction with VIISIGRAPP 2008
The proceedings contain 14 papers. The topics discussed include: descriptive analysis of image data: basic models;media analysis and the algorithm ontology;descriptive approach to medical image analysis- substantiatio...
来源: 评论
Image recommendation for Wikipedia articles  1
Image recommendation for Wikipedia articles
收藏 引用
1st Masters Symposium on Advances in data mining, machine learning, and Computer Vision, MS-AMLV 2019
作者: Onyshchak, Oleh Redi, Miriam Ukrainian Catholic University Lviv Ukraine Wikimedia Foundation London United Kingdom
Multimodal learning, which is simultaneous learning from different data sources such as audio, text, images, is a rapidly emerging field of machine learning. It is also considered as machine learning at the next upper... 详细信息
来源: 评论
Combining data Sources Nonlinearly for Cell Nucleus Classification of Renal Cell Carcinoma
收藏 引用
1st international workshop on Similarity-Based pattern recognition (SIMBAD)
作者: Gonen, Mehmet Ulas, Aydin Schueffler, Peter Castellani, Umberto Murino, Vittorio Aalto Univ Sch Sci Dept Informat & Comp Sci HIIT Espoo Finland Univ Verona Dept Comp Sci Verona Italy ETH Dept Comp Sci Zurich Switzerland IIT Genoa Italy
In kernel-based machine learning algorithms, we can learn a combination of different kernel functions in order to obtain a similarity measure that better matches the underlying problem instead of using a single fixed ... 详细信息
来源: 评论
Online sequential learning based on enhanced extreme learning machine using leftor right pseudo-inverse
Online sequential learning based on enhanced extreme learnin...
收藏 引用
1st international Conference on pattern recognition Applications and Methods, ICPRAM 2012
作者: Zong, Weiwei Lan, Yuan Huang, Guang-Bin School of Electrical and Electronic Engineering Nanyang Technological University Singapore Singapore
The latest development (Huang et al., 2011) has shown that better generalization performance can be obtained for extreme learning machine (ELM) by adding a positive value to the diagonal of HT H or HHT, where H is the... 详细信息
来源: 评论
A hierarchical system for recognition, tracking and pose estimation
A hierarchical system for recognition, tracking and pose est...
收藏 引用
1st international workshop on machine learning for Multimodal Interaction
作者: Zehnder, P Koller-Meier, E Van Gool, L ETH DITET Comp Vis Lab CH-8092 Zurich Switzerland
This paper presents a new system for recognition, tracking and pose estimation of people in video sequences. It is based on the wavelet transform from the upper body part and uses Support Vector machines (SVM) for cla... 详细信息
来源: 评论
Extending framenet to machine learning domain  5
Extending framenet to machine learning domain
收藏 引用
5th Joint workshop on data mining and Knowledge Discovery meets Linked Open data and the 1st international workshop on Completing and Debugging the Semantic Web, Know@LOD 2016 and CoDeS 2016
作者: Jakubowski, Piotr Lawrynowicz, Agnieszka Institute of Computing Science Poznan University of Technology Poland
In recent years, several ontological resources have been proposed to model machine learning domain. However, they do not provide a direct link to linguistic data. In this paper, we propose a linguistic resource, a set... 详细信息
来源: 评论