咨询与建议

限定检索结果

文献类型

  • 550 篇 会议
  • 28 篇 期刊文献
  • 7 册 图书

馆藏范围

  • 585 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 470 篇 工学
    • 425 篇 计算机科学与技术...
    • 199 篇 软件工程
    • 110 篇 电气工程
    • 67 篇 信息与通信工程
    • 45 篇 生物工程
    • 42 篇 生物医学工程(可授...
    • 26 篇 控制科学与工程
    • 20 篇 光学工程
    • 13 篇 仪器科学与技术
    • 11 篇 机械工程
    • 10 篇 化学工程与技术
    • 9 篇 交通运输工程
    • 8 篇 电子科学与技术(可...
    • 7 篇 土木工程
  • 140 篇 理学
    • 69 篇 数学
    • 56 篇 生物学
    • 33 篇 物理学
    • 24 篇 统计学(可授理学、...
    • 19 篇 系统科学
    • 8 篇 化学
  • 90 篇 管理学
    • 63 篇 图书情报与档案管...
    • 35 篇 管理科学与工程(可...
    • 19 篇 工商管理
  • 46 篇 医学
    • 36 篇 临床医学
    • 22 篇 基础医学(可授医学...
    • 13 篇 药学(可授医学、理...
    • 7 篇 特种医学
    • 6 篇 公共卫生与预防医...
  • 11 篇 法学
    • 9 篇 社会学
  • 11 篇 教育学
    • 10 篇 教育学
  • 8 篇 经济学
  • 6 篇 农学

主题

  • 74 篇 machine learning
  • 55 篇 data mining
  • 36 篇 pattern recognit...
  • 33 篇 deep learning
  • 20 篇 feature extracti...
  • 18 篇 artificial intel...
  • 16 篇 support vector m...
  • 15 篇 learning systems
  • 11 篇 image classifica...
  • 9 篇 training
  • 8 篇 neural networks
  • 8 篇 face recognition
  • 8 篇 manifold learnin...
  • 8 篇 supervised learn...
  • 7 篇 pattern classifi...
  • 7 篇 big data
  • 7 篇 clustering algor...
  • 7 篇 classification (...
  • 7 篇 machine learning...
  • 7 篇 data models

机构

  • 4 篇 ukrainian cathol...
  • 3 篇 harbin inst tech...
  • 3 篇 guilin univ elec...
  • 3 篇 fujian univ tech...
  • 3 篇 college of compu...
  • 3 篇 kunming univ col...
  • 3 篇 nanjing univ sci...
  • 3 篇 concordia univ d...
  • 2 篇 shanghai jiao to...
  • 2 篇 australian e-hea...
  • 2 篇 telangana hydera...
  • 2 篇 key lab data gov...
  • 2 篇 idiap ch-1920 ma...
  • 2 篇 department of ma...
  • 2 篇 univ toronto dep...
  • 2 篇 univ montreal di...
  • 2 篇 chitkara univers...
  • 2 篇 natl univ singap...
  • 2 篇 pattern analysis...
  • 2 篇 univ katolik ind...

作者

  • 3 篇 li junbao
  • 3 篇 maier andreas
  • 3 篇 bengio s
  • 3 篇 deepa r.
  • 3 篇 deng fei
  • 3 篇 pan jeng-shyang
  • 3 篇 hu cong
  • 3 篇 zhang daoqiang
  • 3 篇 amelio alessia
  • 3 篇 maier-hein klaus
  • 3 篇 he chunhui
  • 2 篇 vrahatis aristid...
  • 2 篇 jin zhong
  • 2 篇 collobert r
  • 2 篇 tax dmj
  • 2 篇 sharma r
  • 2 篇 cilia nicole dal...
  • 2 篇 fontanella franc...
  • 2 篇 genov r
  • 2 篇 stiefelhagen rai...

语言

  • 568 篇 英文
  • 12 篇 中文
  • 9 篇 其他
  • 1 篇 俄文
检索条件"任意字段=1st International Workshop on Machine Learning and Data Mining in Pattern Recognition"
585 条 记 录,以下是181-190 订阅
排序:
Applying machine learning Technology for Weather Forecasting: A Case study of the Logistic Regression Model  24
Applying Machine Learning Technology for Weather Forecasting...
收藏 引用
1st international Conference on Image Processing machine learning and pattern recognition
作者: Shen, Kaiwei Beijing Inst Petrochem Technol China Big Data Management & Applicat Beijing Peoples R China
This study is focused on improving the dependability and precision of weather forecasting by employing the capabilities of Artificial Intelligence. Specifically, this study utilizes Logistic Regression and machine Lea... 详细信息
来源: 评论
1st international workshop on machine learning, Optimization, and Big data, MOD 2015
1st International Workshop on Machine Learning, Optimization...
收藏 引用
1st international workshop on machine learning, Optimization, and Big data, MOD 2015
The proceedings contain 32 papers. The special focus in this conference is on machine learning, Optimization, and Big data. The topics include: Automatic tuning of algorithms through sensitivity minimization;step down...
来源: 评论
learning from Partially Labeled Sequences for Behavioral Signal Annotation  7th
Learning from Partially Labeled Sequences for Behavioral Sig...
收藏 引用
7th international workshop on machine learning and data mining for Sports Analytics (MLSA)
作者: Aniszewska-stepien, Anna Herault, Romain Hacques, Guillaume Seifert, Ludovic Gasso, Gilles INSA Rouen Normandy St Etienne Du Rouvray France Rouen Univ Normandy Mont St Aignan France
Herewith, we present a learning procedure that allows to deal with a partially labeled sequence dataset, i.e. when each sequence in the train dataset may contain labeled as well as unlabeled chunks. In our application... 详细信息
来源: 评论
ASM 2015 - Proceedings of the 1st international workshop on Affect and Sentiment in Multimedia, co-located with ACM MM 2015
ASM 2015 - Proceedings of the 1st International Workshop on ...
收藏 引用
1st international workshop on Affect and Sentiment in Multimedia, ASM 2015
The proceedings contain 10 papers. The topics discussed include: learning combinations of multiple feature representations for music emotion prediction;twitter: a new online source of automatically tagged data for con...
来源: 评论
The Epistle to Cangrande Through the Lens of Computational Authorship Verification  2nd
The Epistle to Cangrande Through the Lens of Computational A...
收藏 引用
2nd international workshop on Recent Advances in Digital Security: Biometrics and Forensics, BioFor 2019, 1st international workshop on pattern recognition for Cultural Heritage, PatReCH 2019, 1st international workshop eHealth in the Big data and Deep learning Era, e-BADLE 2019, international workshop on Deep Understanding Shopper Behaviors and Interactions in Intelligent Retail Environments, DEEPRETAIL 2019 and Industrial session held at the 20th international Conference on Image Analysis and Processing, ICIAP 2019
作者: Corbara, Silvia Moreo, Alejandro Sebastiani, Fabrizio Tavoni, Mirko Istituto di Scienza e Tecnologie dell’Informazione Consiglio Nazionale delle Ricerche Pisa56124 Italy Dipartimento di Filologia Letteratura e Linguistica Università di Pisa Pisa56126 Italy
The Epistle to Cangrande is one of the most controversial among the works of Italian poet Dante Alighieri. For more than a hundred years now, scholars have been debating over its real paternity, i.e., whether it shoul... 详细信息
来源: 评论
Predicting signal peptides with support vector machines  1st
Predicting signal peptides with support vector machines
收藏 引用
1st international workshop on pattern recognition with Support Vector machines
作者: Mukherjee, N Mukherjee, S MIT Ctr Biol & Computat Learning Cambridge MA 02139 USA MIT Whitehead Inst Biomed Res Ctr Genome Res Cambridge MA 02139 USA Univ Calif San Diego Dept Biol La Jolla CA 92093 USA
We examine using a Support Vector machine to predict secretory signal peptides. We predict signal peptides for both prokaryotic and eukaryotic signal organisms. Signalling peptides versus non-signaling peptides as wel... 详细信息
来源: 评论
Enabling Edge Devices that Learn from Each Other: Cross Modal Training for Activity recognition  1
Enabling Edge Devices that Learn from Each Other: Cross Moda...
收藏 引用
1st ACM internationalworkshop on Edge Systems, Analytics and Networking (EdgeSys)
作者: Xing, Tianwei Sandha, Sandeep Singh Balaji, Bharathan Chakraborty, Supriyo Srivastava, Mani Univ Calif Los Angeles Los Angeles CA 90024 USA IBM TJ Watson Res Ctr Yorktown Hts NY USA
Edge devices rely extensively on machine learning for intelligent inferences and pattern matching. However, edge devices use a multitude of sensing modalities and are exposed to wide ranging contexts. It is difficult ... 详细信息
来源: 评论
Technology of text mining
收藏 引用
2nd international workshop on machine learning and data mining in pattern recognition
作者: Visa, A Tampere Univ Technol FIN-33101 Tampere Finland
A large amount of information is stored in databases, in intranets or in Internet. This information is organised in documents or in text documents. The difference depends on the fact if pictures, tables, figures, and ... 详细信息
来源: 评论
A Methodology for Assessing Carbon Emission Indicators Based on Incorporates machine learning and Multi-modal data  24
A Methodology for Assessing Carbon Emission Indicators Based...
收藏 引用
1st international Conference on Image Processing machine learning and pattern recognition
作者: Zhang, Shuang Liu, Jia Ma, Rui Sha, Jiangbo Kang, Wenni Qu, Fanghao Kang, Yibin Ningxia Elect Power Res Inst Yinchuan Ningxia Peoples R China State Grid Xintong Yili Technol Co Ltd Nanjing Peoples R China
Since the status of carbon emission indicators involves many factors, there is often a problem of large errors when evaluating them. For this reason, this paper proposes a study on a carbon emission indicator evaluati... 详细信息
来源: 评论
An Improvement of Two-dimensional Robust Principal Component Analysis Based on ADMM Solution  24
An Improvement of Two-dimensional Robust Principal Component...
收藏 引用
1st international Conference on Image Processing machine learning and pattern recognition
作者: Pan, Wen Guo, Yuzhen Nanjing Univ Aeronaut & Astronaut Coll Math Nanjing Peoples R China
Robust principal component analysis (PCA) is an important data dimensionality reduction algorithm. The traditional method to measure recovery error by F-norm is highly sensitive to noise. This paper proposed a modifie... 详细信息
来源: 评论