咨询与建议

限定检索结果

文献类型

  • 550 篇 会议
  • 28 篇 期刊文献
  • 7 册 图书

馆藏范围

  • 585 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 470 篇 工学
    • 425 篇 计算机科学与技术...
    • 199 篇 软件工程
    • 110 篇 电气工程
    • 67 篇 信息与通信工程
    • 45 篇 生物工程
    • 42 篇 生物医学工程(可授...
    • 26 篇 控制科学与工程
    • 20 篇 光学工程
    • 13 篇 仪器科学与技术
    • 11 篇 机械工程
    • 10 篇 化学工程与技术
    • 9 篇 交通运输工程
    • 8 篇 电子科学与技术(可...
    • 7 篇 土木工程
  • 140 篇 理学
    • 69 篇 数学
    • 56 篇 生物学
    • 33 篇 物理学
    • 24 篇 统计学(可授理学、...
    • 19 篇 系统科学
    • 8 篇 化学
  • 90 篇 管理学
    • 63 篇 图书情报与档案管...
    • 35 篇 管理科学与工程(可...
    • 19 篇 工商管理
  • 46 篇 医学
    • 36 篇 临床医学
    • 22 篇 基础医学(可授医学...
    • 13 篇 药学(可授医学、理...
    • 7 篇 特种医学
    • 6 篇 公共卫生与预防医...
  • 11 篇 法学
    • 9 篇 社会学
  • 11 篇 教育学
    • 10 篇 教育学
  • 8 篇 经济学
  • 6 篇 农学

主题

  • 74 篇 machine learning
  • 55 篇 data mining
  • 36 篇 pattern recognit...
  • 33 篇 deep learning
  • 20 篇 feature extracti...
  • 18 篇 artificial intel...
  • 16 篇 support vector m...
  • 15 篇 learning systems
  • 11 篇 image classifica...
  • 9 篇 training
  • 8 篇 neural networks
  • 8 篇 face recognition
  • 8 篇 manifold learnin...
  • 8 篇 supervised learn...
  • 7 篇 pattern classifi...
  • 7 篇 big data
  • 7 篇 clustering algor...
  • 7 篇 classification (...
  • 7 篇 machine learning...
  • 7 篇 data models

机构

  • 4 篇 ukrainian cathol...
  • 3 篇 harbin inst tech...
  • 3 篇 guilin univ elec...
  • 3 篇 fujian univ tech...
  • 3 篇 college of compu...
  • 3 篇 kunming univ col...
  • 3 篇 nanjing univ sci...
  • 3 篇 concordia univ d...
  • 2 篇 shanghai jiao to...
  • 2 篇 australian e-hea...
  • 2 篇 telangana hydera...
  • 2 篇 key lab data gov...
  • 2 篇 idiap ch-1920 ma...
  • 2 篇 department of ma...
  • 2 篇 univ toronto dep...
  • 2 篇 univ montreal di...
  • 2 篇 chitkara univers...
  • 2 篇 natl univ singap...
  • 2 篇 pattern analysis...
  • 2 篇 univ katolik ind...

作者

  • 3 篇 li junbao
  • 3 篇 maier andreas
  • 3 篇 bengio s
  • 3 篇 deepa r.
  • 3 篇 deng fei
  • 3 篇 pan jeng-shyang
  • 3 篇 hu cong
  • 3 篇 zhang daoqiang
  • 3 篇 amelio alessia
  • 3 篇 maier-hein klaus
  • 3 篇 he chunhui
  • 2 篇 vrahatis aristid...
  • 2 篇 jin zhong
  • 2 篇 collobert r
  • 2 篇 tax dmj
  • 2 篇 sharma r
  • 2 篇 cilia nicole dal...
  • 2 篇 fontanella franc...
  • 2 篇 genov r
  • 2 篇 stiefelhagen rai...

语言

  • 568 篇 英文
  • 12 篇 中文
  • 9 篇 其他
  • 1 篇 俄文
检索条件"任意字段=1st International Workshop on Machine Learning and Data Mining in Pattern Recognition"
585 条 记 录,以下是201-210 订阅
排序:
Similarity-Based pattern recognition - First international workshop, SIMBAD 2011, Proceedings
Similarity-Based Pattern Recognition - First International W...
收藏 引用
1st international workshop on Similarity-Based pattern recognition, SIMBAD 2011
The proceedings contain 23 papers. The topics discussed include: on the usefulness of similarity based projection spaces for transfer learning;metric anomaly detection via asymmetric risk minimization;one shot similar...
来源: 评论
Proceedings of the 1st ACM SIGSPATIAL international workshop on Advances in Resilient and Intelligent Cities, ARIC 2018
Proceedings of the 1st ACM SIGSPATIAL International Workshop...
收藏 引用
1st ACM SIGSPATIAL international workshop on Advances in Resilient and Intelligent Cities, ARIC 2018
The proceedings contain 8 papers. The topics discussed include: multiple evaluation in future population distribution for sustainable city;detecting street signs in cities based on object recognition with machine lear...
来源: 评论
A trie-based APRIORI implementation for mining frequent item sequences
A trie-based APRIORI implementation for mining frequent item...
收藏 引用
1st international workshop on Open Source data mining: Frequent pattern mining Implementations, OSDM 2005, held in conjunction with the 11th ACM SIGKDD international Conference on Knowledge Discovery and data mining
作者: Bodon, Ferenc Department of Computer Science and Information Theory Budapest University of Technology and Economics Hungarian Academy of Sciences Hungary
In this paper we investigate a trie-based APRIORI algorithm for mining frequent item sequences in a transactional database. We examine the data structure, implementation and algorithmic features mainly focusing on tho... 详细信息
来源: 评论
A Methodology for Assessing Carbon Emission Indicators Based on Incorporates machine learning and Multi-modal data  24
A Methodology for Assessing Carbon Emission Indicators Based...
收藏 引用
1st international Conference on Image Processing machine learning and pattern recognition
作者: Zhang, Shuang Liu, Jia Ma, Rui Sha, Jiangbo Kang, Wenni Qu, Fanghao Kang, Yibin Ningxia Elect Power Res Inst Yinchuan Ningxia Peoples R China State Grid Xintong Yili Technol Co Ltd Nanjing Peoples R China
Since the status of carbon emission indicators involves many factors, there is often a problem of large errors when evaluating them. For this reason, this paper proposes a study on a carbon emission indicator evaluati... 详细信息
来源: 评论
CEUR workshop Proceedings
CEUR Workshop Proceedings
收藏 引用
Joint 6th international workshop on dataset PROFILing and Search and the 1st workshop on Semantic Explainability, PROFILES-SEMEX 2019
The proceedings contain 8 papers. The topics discussed include: towards multi-facet snippets for dataset search;towards employing semantic license annotations for sensor data profiling;mining machine-readable knowledg...
来源: 评论
Lower limb movement state pattern recognition based on EEG-EMG signals  24
Lower limb movement state pattern recognition based on EEG-E...
收藏 引用
1st international Conference on Image Processing machine learning and pattern recognition
作者: Wang, Tao Xie, Nenggang Anhui Univ Technol Coll Mech Engn Huainan Anhui Peoples R China Anhui Univ Technol Coll Management Sci & Engn Huainan Anhui Peoples R China
Assessing the lower limb motor states of stroke patients based on biosignals is very important in the field of medical rehabilitation, and the importance of finding effective physiological signal indicators and proces... 详细信息
来源: 评论
Enabling Edge Devices that Learn from Each Other: Cross Modal Training for Activity recognition  1
Enabling Edge Devices that Learn from Each Other: Cross Moda...
收藏 引用
1st ACM internationalworkshop on Edge Systems, Analytics and Networking (EdgeSys)
作者: Xing, Tianwei Sandha, Sandeep Singh Balaji, Bharathan Chakraborty, Supriyo Srivastava, Mani Univ Calif Los Angeles Los Angeles CA 90024 USA IBM TJ Watson Res Ctr Yorktown Hts NY USA
Edge devices rely extensively on machine learning for intelligent inferences and pattern matching. However, edge devices use a multitude of sensing modalities and are exposed to wide ranging contexts. It is difficult ... 详细信息
来源: 评论
data assessment and prioritization in mobile networks for real-time prediction of spatial information with machine learning  1
Data assessment and prioritization in mobile networks for re...
收藏 引用
1st international workshop on Network Meets Intelligent Computations, NMIC 2019
作者: Shinkuma, Ryoichi Nishio, Takayuki Graduate School of Informatics Kyoto University Kyoto Japan
A new framework of data assessment and prioritization for real-time prediction of spatial information is presented. In next generation mobile networks, the real-time prediction of spatial information will be a promisi... 详细信息
来源: 评论
ICPRAM 2012 - Proceedings of the 1st international Conference on pattern recognition Applications and Methods
ICPRAM 2012 - Proceedings of the 1st International Conferenc...
收藏 引用
1st international Conference on pattern recognition Applications and Methods, ICPRAM 2012
The proceedings contain 147 papers. The topics discussed include: estimation of the common oscillation for phase locked matrix factorization;a general algorithm for calculating force histograms using vector data;on th...
来源: 评论
ICPRAM 2012 - Proceedings of the 1st international Conference on pattern recognition Applications and Methods
ICPRAM 2012 - Proceedings of the 1st International Conferenc...
收藏 引用
1st international Conference on pattern recognition Applications and Methods, ICPRAM 2012
The proceedings contain 147 papers. The topics discussed include: estimation of the common oscillation for phase locked matrix factorization;a general algorithm for calculating force histograms using vector data;on th...
来源: 评论