咨询与建议

限定检索结果

文献类型

  • 550 篇 会议
  • 28 篇 期刊文献
  • 7 册 图书

馆藏范围

  • 585 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 470 篇 工学
    • 425 篇 计算机科学与技术...
    • 199 篇 软件工程
    • 110 篇 电气工程
    • 67 篇 信息与通信工程
    • 45 篇 生物工程
    • 42 篇 生物医学工程(可授...
    • 26 篇 控制科学与工程
    • 20 篇 光学工程
    • 13 篇 仪器科学与技术
    • 11 篇 机械工程
    • 10 篇 化学工程与技术
    • 9 篇 交通运输工程
    • 8 篇 电子科学与技术(可...
    • 7 篇 土木工程
  • 140 篇 理学
    • 69 篇 数学
    • 56 篇 生物学
    • 33 篇 物理学
    • 24 篇 统计学(可授理学、...
    • 19 篇 系统科学
    • 8 篇 化学
  • 90 篇 管理学
    • 63 篇 图书情报与档案管...
    • 35 篇 管理科学与工程(可...
    • 19 篇 工商管理
  • 46 篇 医学
    • 36 篇 临床医学
    • 22 篇 基础医学(可授医学...
    • 13 篇 药学(可授医学、理...
    • 7 篇 特种医学
    • 6 篇 公共卫生与预防医...
  • 11 篇 法学
    • 9 篇 社会学
  • 11 篇 教育学
    • 10 篇 教育学
  • 8 篇 经济学
  • 6 篇 农学

主题

  • 74 篇 machine learning
  • 55 篇 data mining
  • 36 篇 pattern recognit...
  • 33 篇 deep learning
  • 20 篇 feature extracti...
  • 18 篇 artificial intel...
  • 16 篇 support vector m...
  • 15 篇 learning systems
  • 11 篇 image classifica...
  • 9 篇 training
  • 8 篇 neural networks
  • 8 篇 face recognition
  • 8 篇 manifold learnin...
  • 8 篇 supervised learn...
  • 7 篇 pattern classifi...
  • 7 篇 big data
  • 7 篇 clustering algor...
  • 7 篇 classification (...
  • 7 篇 machine learning...
  • 7 篇 data models

机构

  • 4 篇 ukrainian cathol...
  • 3 篇 harbin inst tech...
  • 3 篇 guilin univ elec...
  • 3 篇 fujian univ tech...
  • 3 篇 college of compu...
  • 3 篇 kunming univ col...
  • 3 篇 nanjing univ sci...
  • 3 篇 concordia univ d...
  • 2 篇 shanghai jiao to...
  • 2 篇 australian e-hea...
  • 2 篇 telangana hydera...
  • 2 篇 key lab data gov...
  • 2 篇 idiap ch-1920 ma...
  • 2 篇 department of ma...
  • 2 篇 univ toronto dep...
  • 2 篇 univ montreal di...
  • 2 篇 chitkara univers...
  • 2 篇 natl univ singap...
  • 2 篇 pattern analysis...
  • 2 篇 univ katolik ind...

作者

  • 3 篇 li junbao
  • 3 篇 maier andreas
  • 3 篇 bengio s
  • 3 篇 deepa r.
  • 3 篇 deng fei
  • 3 篇 pan jeng-shyang
  • 3 篇 hu cong
  • 3 篇 zhang daoqiang
  • 3 篇 amelio alessia
  • 3 篇 maier-hein klaus
  • 3 篇 he chunhui
  • 2 篇 vrahatis aristid...
  • 2 篇 jin zhong
  • 2 篇 collobert r
  • 2 篇 tax dmj
  • 2 篇 sharma r
  • 2 篇 cilia nicole dal...
  • 2 篇 fontanella franc...
  • 2 篇 genov r
  • 2 篇 stiefelhagen rai...

语言

  • 568 篇 英文
  • 12 篇 中文
  • 9 篇 其他
  • 1 篇 俄文
检索条件"任意字段=1st International Workshop on Machine Learning and Data Mining in Pattern Recognition"
585 条 记 录,以下是251-260 订阅
排序:
Adaptive Joint Attention with Reinforcement Training for Convolutional Image Caption  1st
Adaptive Joint Attention with Reinforcement Training for C...
收藏 引用
1st international workshop on Human Brain and Artificial Intelligence, HBAI 2019, held in conjunction with the 28th international Joint Conference on Artificial Intelligence, IJCAI 2019
作者: Chen, Ruoyu Li, Zhongnian Zhang, Daoqiang College of Computer Science and Technology MIIT Key Laboratory of Pattern Analysis and Machine Intelligence Nanjing University of Aeronautics and Astronautics Nanjing China
A convolutional decoder for image caption has proven to be easier to train than the Long Short Term Memory (LstM) decoder [2]. However, previous convolutional image captioning methods are not good at capture the relat... 详细信息
来源: 评论
Ensemble of 3D CNN Regressors with data Fusion for Fluid Intelligence Prediction  1
收藏 引用
1st Challenge in Adolescent Brain Cognitive Development Neurocognitive Prediction, ABCD-NP 2019, held in conjunction with the 22nd international Conference on Medical Image Computing and Computer Assisted Intervention, MICCAI 2019
作者: Pominova, Marina Kuzina, Anna Kondrateva, Ekaterina Sushchinskaya, Svetlana Burnaev, Evgeny Yarkin, Vyacheslav Sharaev, Maxim Skolkovo Institute of Science and Technology Moscow Russia
In this work, we aimed at predicting children’s fluid intelligence scores based on structural T1-weighted MR images from the largest long-term study of brain development and child health. The target variable was regr... 详细信息
来源: 评论
Towards a practical process model for Anomaly Detection Systems  1
Towards a practical process model for Anomaly Detection Syst...
收藏 引用
1st ACM/IEEE international workshop on Software Engineering for Cognitive Services (SE4COG)
作者: Schwenzfeier, Nils Gruhn, Volker Univ Duisburg Essen Paluno Ruhr Inst Software Technol Duisburg Germany
Process models are an important tool for software engineers to produce reliable software within schedule and budget. Especially technically challenging domains like machine learning need a supportive process model to ... 详细信息
来源: 评论
Enhancing Person Re-identification based on Recurrent Feature Aggregation Network  1
Enhancing Person Re-identification based on Recurrent Featur...
收藏 引用
1st international Conference on Multimedia Analysis and pattern recognition (MAPR)
作者: Quan Nguyen Hong Thuy-Binh Nguyen Thi-Lan Le Hanoi Univ Sci & Technol Sch Elect & Commun Hanoi Vietnam Hanoi Univ Sci & Technol MICA Int Res Inst CNRS UMI2954 Grenoble INP Hanoi Vietnam Viet Hung Ind Univ Fac Informat Technol Hanoi Vietnam Univ Transport & Commun Fac Elect & Elect Engn Hanoi Vietnam
This paper proposes a method for video-based person re-identification. Motivated by the capacity of Recurrent Feature Aggregation Network (RFA-Net) that allows to aggregate the image-level features over time-steps and... 详细信息
来源: 评论
Triplet Graph Convolutional Network for Multi-scale Analysis of Functional Connectivity Using Functional MRI  1
收藏 引用
1st international workshop on Graph learning in Medical Imaging, GLMI 2019 held in conjunction with the 22nd international Conference on Medical Image Computing and Computer-Assisted Intervention, MICCAI 2019
作者: Yao, Dongren Liu, Mingxia Wang, Mingliang Lian, Chunfeng Wei, Jie Sun, Li Sui, Jing Shen, Dinggang Brainnetome Center & National Laboratory of Pattern Recognition Institute of Automation Chinese Academy of Sciences Beijing100190 China University of Chinese Academy of Sciences Beijing100049 China Department of Radiology and BRIC University of North Carolina at Chapel Hill Chapel HillNC27599 United States College of Computer Science and Technology Nanjing University of Aeronautics and Astronautics Nanjing210016 China School of Computer Science Northwestern Polytechnical University Xi’an710072 China National Clinical Research Center for Mental Disorders & Key Laboratory of Mental Health Ministry of Health Peking University Beijing100191 China
Brain functional connectivity (FC) derived from resting-state functional MRI (rs-fMRI) data has become a powerful approach to measure and map brain activity. Using fMRI data, graph convolutional network (GCN) has rece... 详细信息
来源: 评论
Deleterious Effects of Uncertainty in Color Imagery streams on Classification Models
Deleterious Effects of Uncertainty in Color Imagery Streams ...
收藏 引用
international Conference on Artificial Intelligence and data Sciences (AiDAS)
作者: Syed Muslim Jameel Manzoor Ahmed Hashmani Hitham Al Hussain Mobashar Rehman Arif Budiman Department of Computer and Information Sciences Universiti Teknologi PETRONAS Sri Iskandar Malaysia Universiti Tunku Abdul Rahman Kampar Malaysia University of Indonesia Jakarta Indonesia
The following topics are dealt with: learning (artificial intelligence); feature extraction; pattern classification; support vector machines; text analysis; data mining; time series; image classification; optimisation... 详细信息
来源: 评论
Graph Hyperalignment for Multi-subject fMRI Functional Alignment  1
收藏 引用
1st international workshop on Graph learning in Medical Imaging, GLMI 2019 held in conjunction with the 22nd international Conference on Medical Image Computing and Computer-Assisted Intervention, MICCAI 2019
作者: Li, Weida Chen, Fang Zhang, Daoqiang College of Computer Science and Technology MIIT Key Laboratory of Pattern Analysis and Machine Intelligence Nanjing University of Aeronautics and Astronautics Nanjing China
In fMRI analysis, the scientist seeks to aggregate multi-subject fMRI data so that inferences shared across subjects can be achieved. The challenge is to eliminate the variability of anatomical structure and functiona... 详细信息
来源: 评论
Artificial Neural Networks Optimized with Unsupervised Clustering for IDS Classification
Artificial Neural Networks Optimized with Unsupervised Clust...
收藏 引用
international Conference on Smart Systems and data Science (ICSSD)
作者: Ichrak Lafram Naoual Berbiche Jamila El Alami Laboratoire d’Analyse des systèmes et Traitement d’Image et Management Mohammed V University Rabat Agdal Rabat Morocco
The following topics are dealt with: learning (artificial intelligence); data mining; pattern classification; Big data; production engineering computing; computer aided instruction; Internet; ontologies (artificial in... 详细信息
来源: 评论
Improving Detection Accuracy for Imbalanced Network Intrusion Classification using Cluster-based Under-sampling with Random Forests
Improving Detection Accuracy for Imbalanced Network Intrusio...
收藏 引用
international Conference on Advances in Science, Engineering and Robotics Technology (ICASERT)
作者: Md. Ochiuddin Miah Sakib Shahriar Khan Swakkhar Shatabda Dewan Md. Farid Department of Computer Science & Engineering United International University Dhaka Bangladesh
Network intrusion classification i n t he imbalanced big data environment becomes a significant and important issue in information and communications technology (ICT) in this digital era. Presently, intrusion detectio... 详细信息
来源: 评论
Traffic Sign recognition Based On Multi-feature Fusion and ELM Classifier  1
Traffic Sign Recognition Based On Multi-feature Fusion and E...
收藏 引用
1st international Conference on Intelligent Computing in data Sciences (ICDS)
作者: Aziz, Saouli Mohamed, El Aroussi Youssef, Fakhri Univ Ibn Tofail Fac Sci LaRIT Lab BP 242 Kenitra Morocco EHTP SIRC LAGES BP 8108 Casablanca Morocco
This paper proposes a novel and efficient method for traffic sign recognition based on combination of complementary and discriminative feature sets. The extracted features are the histogram of oriented gradients (HOG)... 详细信息
来源: 评论