咨询与建议

限定检索结果

文献类型

  • 550 篇 会议
  • 28 篇 期刊文献
  • 7 册 图书

馆藏范围

  • 585 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 470 篇 工学
    • 425 篇 计算机科学与技术...
    • 199 篇 软件工程
    • 110 篇 电气工程
    • 67 篇 信息与通信工程
    • 45 篇 生物工程
    • 42 篇 生物医学工程(可授...
    • 26 篇 控制科学与工程
    • 20 篇 光学工程
    • 13 篇 仪器科学与技术
    • 11 篇 机械工程
    • 10 篇 化学工程与技术
    • 9 篇 交通运输工程
    • 8 篇 电子科学与技术(可...
    • 7 篇 土木工程
  • 140 篇 理学
    • 69 篇 数学
    • 56 篇 生物学
    • 33 篇 物理学
    • 24 篇 统计学(可授理学、...
    • 19 篇 系统科学
    • 8 篇 化学
  • 90 篇 管理学
    • 63 篇 图书情报与档案管...
    • 35 篇 管理科学与工程(可...
    • 19 篇 工商管理
  • 46 篇 医学
    • 36 篇 临床医学
    • 22 篇 基础医学(可授医学...
    • 13 篇 药学(可授医学、理...
    • 7 篇 特种医学
    • 6 篇 公共卫生与预防医...
  • 11 篇 法学
    • 9 篇 社会学
  • 11 篇 教育学
    • 10 篇 教育学
  • 8 篇 经济学
  • 6 篇 农学

主题

  • 74 篇 machine learning
  • 55 篇 data mining
  • 36 篇 pattern recognit...
  • 33 篇 deep learning
  • 20 篇 feature extracti...
  • 18 篇 artificial intel...
  • 16 篇 support vector m...
  • 15 篇 learning systems
  • 11 篇 image classifica...
  • 9 篇 training
  • 8 篇 neural networks
  • 8 篇 face recognition
  • 8 篇 manifold learnin...
  • 8 篇 supervised learn...
  • 7 篇 pattern classifi...
  • 7 篇 big data
  • 7 篇 clustering algor...
  • 7 篇 classification (...
  • 7 篇 machine learning...
  • 7 篇 data models

机构

  • 4 篇 ukrainian cathol...
  • 3 篇 harbin inst tech...
  • 3 篇 guilin univ elec...
  • 3 篇 fujian univ tech...
  • 3 篇 college of compu...
  • 3 篇 kunming univ col...
  • 3 篇 nanjing univ sci...
  • 3 篇 concordia univ d...
  • 2 篇 shanghai jiao to...
  • 2 篇 australian e-hea...
  • 2 篇 telangana hydera...
  • 2 篇 key lab data gov...
  • 2 篇 idiap ch-1920 ma...
  • 2 篇 department of ma...
  • 2 篇 univ toronto dep...
  • 2 篇 univ montreal di...
  • 2 篇 chitkara univers...
  • 2 篇 natl univ singap...
  • 2 篇 pattern analysis...
  • 2 篇 univ katolik ind...

作者

  • 3 篇 li junbao
  • 3 篇 maier andreas
  • 3 篇 bengio s
  • 3 篇 deepa r.
  • 3 篇 deng fei
  • 3 篇 pan jeng-shyang
  • 3 篇 hu cong
  • 3 篇 zhang daoqiang
  • 3 篇 amelio alessia
  • 3 篇 maier-hein klaus
  • 3 篇 he chunhui
  • 2 篇 vrahatis aristid...
  • 2 篇 jin zhong
  • 2 篇 collobert r
  • 2 篇 tax dmj
  • 2 篇 sharma r
  • 2 篇 cilia nicole dal...
  • 2 篇 fontanella franc...
  • 2 篇 genov r
  • 2 篇 stiefelhagen rai...

语言

  • 568 篇 英文
  • 12 篇 中文
  • 9 篇 其他
  • 1 篇 俄文
检索条件"任意字段=1st International Workshop on Machine Learning and Data Mining in Pattern Recognition"
585 条 记 录,以下是21-30 订阅
排序:
learning in pattern recognition  1st
Learning in pattern recognition
收藏 引用
1st international workshop on machine learning and data mining in pattern recognition
作者: Petrou, M Univ Surrey Sch Elect Engn Informat Technol & Math Guildford GU2 5XH Surrey England
learning in the context of a pattern recognition system is defined as the process that allows it to cope with real and ambiguous data. The various ways by which artificial decision systems operate are discussed in con... 详细信息
来源: 评论
A data mining application for monitoring environmental risks  1st
A data mining application for monitoring environmental risks
收藏 引用
1st international workshop on machine learning and data mining in pattern recognition
作者: Scaringella, A Consiglio Minist DSTN Serv Idrograf & Mareograf Nazl I-00185 Rome Italy Univ Rome La Sapienza CATTID Rome Italy
We describe the guidelines of a system for monitoring environmental risk situations. The system is based on data mining techniques and in particular classification trees working on the data base collected by the Itali... 详细信息
来源: 评论
Reproductive process-oriented data mining from interactions between human and complex artifact system  1st
Reproductive process-oriented data mining from interactions ...
收藏 引用
1st international workshop on machine learning and data mining in pattern recognition
作者: Sawaragi, T Kyoto Univ Grad Sch Engn Dept Precis Engn Kyoto 6068501 Japan
This paper presents a method for concept formation of a personal learning apprentice (PLA) system that attempts to capture users' internal conceptual structure by observing interactions between user and system. Cu... 详细信息
来源: 评论
Finding the Right Features for Instrument Classification of Classical Music  06
<bold>Finding the Right Features for Instrument Classificati...
收藏 引用
1st international workshop international AI and data mining
作者: Deng, Da Simmermacher, Christian Cranefield, stephen Univ Otago Dept Informat Sci POB 56 Dunedin New Zealand
In tackling data mining and pattern recognition tasks, finding a compact but effective set of features is often a crucial step in the whole problem solving process. In this paper we present an empirical study on featu... 详细信息
来源: 评论
Unsupervised learning of local mean gray values for image pre-processing  1st
Unsupervised learning of local mean gray values for image pr...
收藏 引用
1st international workshop on machine learning and data mining in pattern recognition
作者: Jahn, H DLR Deutsch Zentrum Luft & Raumfahrt EV Inst Weltraumsensor & Planetenerkundung D-12489 Berlin Germany
A parallel-sequential unsupervised learning method for image smoothing is presented which can be implemented with a Multi Layer Neural Network. In contrast to older work of the author which has used 4-connectivity of ... 详细信息
来源: 评论
Automatic design of multiple classifier systems by unsupervised learning  1st
Automatic design of multiple classifier systems by unsupervi...
收藏 引用
1st international workshop on machine learning and data mining in pattern recognition
作者: Giacinto, G Roli, F Univ Cagliari Dept Elect & Elect Engn I-09123 Cagliari Italy
In the field of pattern recognition, multiple classifier systems based on the combination of the outputs of a set of different classifiers have been proposed as a method for the development of high performance classif... 详细信息
来源: 评论
On the use of Bernoulli mixture models for text classification
收藏 引用
pattern recognition 2002年 第12期35卷 2705-2710页
作者: Juan, A Vidal, E Univ Politecn Valencia Dep Sistemas Informat & Comp Valencia 46022 Spain
Mixture modelling of class-conditional densities is a standard pattern recognition technique. Although most research on mixture models has concentrated on mixtures for continuous data, emerging pattern recognition app... 详细信息
来源: 评论
Understanding Automated Feedback in learning Processes by mining Local patterns  16th
Understanding Automated Feedback in Learning Processes by Mi...
收藏 引用
14th BPI international workshop / 11th BPM workshop / 1st PODS4H international workshop / 1st AI4BPM international workshop / 1st CCBPM international workshop / 3rd PQ international workshop / 2nd BP-meet-IoT international workshop
作者: Deeva, Galina De Weerdt, Jochen Katholieke Univ Leuven Dept Decis Sci & Informat Management Fac Econ & Business Leuven Belgium
Process mining, and in particular process discovery, provides useful tools for extracting process models from event-based data. Nevertheless, certain types of processes are too complex and unstructured to be able to b... 详细信息
来源: 评论
A dichotomic search algorithm for mining and learning in domain-specific logics
收藏 引用
FUNDAMENTA INFORMATICAE 2005年 第1-2期66卷 1-32页
作者: Ferré, S King, RD Univ Rennes 1 IRISA F-35042 Rennes France Univ Wales Dept Comp Sci Aberystwyth SY23 3DB Dyfed Wales
Many application domains make use of specific data structures such as sequences and graphs to represent knowledge. These data structures are ill-fitted to the standard representations used in machine learning and data... 详细信息
来源: 评论
A fast SVM training algorithm
收藏 引用
international JOURNAL OF pattern recognition AND ARTIFICIAL INTELLIGENCE 2003年 第3期17卷 367-384页
作者: Dong, JX Suen, CY Concordia Univ Ctr Pattern Recognit & Machine Intelligent Montreal PQ H3G 1M8 Canada Concordia Univ Dept Comp Sci Montreal PQ H3G 1M8 Canada
A fast support vector machine (SVM) training algorithm is proposed under SVM's decomposition framework by effectively integrating kernel caching, digest and shrinking policies and stopping conditions. Kernel cachi... 详细信息
来源: 评论