咨询与建议

限定检索结果

文献类型

  • 550 篇 会议
  • 28 篇 期刊文献
  • 7 册 图书

馆藏范围

  • 585 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 470 篇 工学
    • 425 篇 计算机科学与技术...
    • 199 篇 软件工程
    • 110 篇 电气工程
    • 67 篇 信息与通信工程
    • 45 篇 生物工程
    • 42 篇 生物医学工程(可授...
    • 26 篇 控制科学与工程
    • 20 篇 光学工程
    • 13 篇 仪器科学与技术
    • 11 篇 机械工程
    • 10 篇 化学工程与技术
    • 9 篇 交通运输工程
    • 8 篇 电子科学与技术(可...
    • 7 篇 土木工程
  • 140 篇 理学
    • 69 篇 数学
    • 56 篇 生物学
    • 33 篇 物理学
    • 24 篇 统计学(可授理学、...
    • 19 篇 系统科学
    • 8 篇 化学
  • 90 篇 管理学
    • 63 篇 图书情报与档案管...
    • 35 篇 管理科学与工程(可...
    • 19 篇 工商管理
  • 46 篇 医学
    • 36 篇 临床医学
    • 22 篇 基础医学(可授医学...
    • 13 篇 药学(可授医学、理...
    • 7 篇 特种医学
    • 6 篇 公共卫生与预防医...
  • 11 篇 法学
    • 9 篇 社会学
  • 11 篇 教育学
    • 10 篇 教育学
  • 8 篇 经济学
  • 6 篇 农学

主题

  • 74 篇 machine learning
  • 55 篇 data mining
  • 36 篇 pattern recognit...
  • 33 篇 deep learning
  • 20 篇 feature extracti...
  • 18 篇 artificial intel...
  • 16 篇 support vector m...
  • 15 篇 learning systems
  • 11 篇 image classifica...
  • 9 篇 training
  • 8 篇 neural networks
  • 8 篇 face recognition
  • 8 篇 manifold learnin...
  • 8 篇 supervised learn...
  • 7 篇 pattern classifi...
  • 7 篇 big data
  • 7 篇 clustering algor...
  • 7 篇 classification (...
  • 7 篇 machine learning...
  • 7 篇 data models

机构

  • 4 篇 ukrainian cathol...
  • 3 篇 harbin inst tech...
  • 3 篇 guilin univ elec...
  • 3 篇 fujian univ tech...
  • 3 篇 college of compu...
  • 3 篇 kunming univ col...
  • 3 篇 nanjing univ sci...
  • 3 篇 concordia univ d...
  • 2 篇 shanghai jiao to...
  • 2 篇 australian e-hea...
  • 2 篇 telangana hydera...
  • 2 篇 key lab data gov...
  • 2 篇 idiap ch-1920 ma...
  • 2 篇 department of ma...
  • 2 篇 univ toronto dep...
  • 2 篇 univ montreal di...
  • 2 篇 chitkara univers...
  • 2 篇 natl univ singap...
  • 2 篇 pattern analysis...
  • 2 篇 univ katolik ind...

作者

  • 3 篇 li junbao
  • 3 篇 maier andreas
  • 3 篇 bengio s
  • 3 篇 deepa r.
  • 3 篇 deng fei
  • 3 篇 pan jeng-shyang
  • 3 篇 hu cong
  • 3 篇 zhang daoqiang
  • 3 篇 amelio alessia
  • 3 篇 maier-hein klaus
  • 3 篇 he chunhui
  • 2 篇 vrahatis aristid...
  • 2 篇 jin zhong
  • 2 篇 collobert r
  • 2 篇 tax dmj
  • 2 篇 sharma r
  • 2 篇 cilia nicole dal...
  • 2 篇 fontanella franc...
  • 2 篇 genov r
  • 2 篇 stiefelhagen rai...

语言

  • 568 篇 英文
  • 12 篇 中文
  • 9 篇 其他
  • 1 篇 俄文
检索条件"任意字段=1st International Workshop on Machine Learning and Data Mining in Pattern Recognition"
585 条 记 录,以下是381-390 订阅
排序:
Combining crowd-generated media and personal data: Semi-supervised learning for context recognition
Combining crowd-generated media and personal data: Semi-supe...
收藏 引用
1st ACM international workshop on Personal data Meets Distributed Multimedia, PDM 2013 - Co-located with ACM Multimedia 2013
作者: Nguyen-Dinh, Long-Van Rossi, Mirco Blanke, Ulf Tröster, Gerhard Wearable Computing Lab. ETH Zurich Zurich Switzerland
The growing ubiquity of sensors in mobile phones has opened many opportunities for personal daily activity sensing. Most context recognition systems require a cumbersome preparation by collecting and manually annotati... 详细信息
来源: 评论
New Frontiers in mining Complex patterns - First international workshop, NFMCP 2012, Held in Conjunction with ECML-PKDD 2012, Revised Selected Papers
New Frontiers in Mining Complex Patterns - First Internation...
收藏 引用
1st international workshop on New Frontiers in mining Complex patterns, NFMCP 2012
The proceedings contain 15 papers. The topics discussed include: learning with configurable operators and RL-based heuristics;reducing examples in relational learning with bounded-treewidth hypotheses;mining complex e...
来源: 评论
Fusing traffic sensor data for real-time road conditions
Fusing traffic sensor data for real-time road conditions
收藏 引用
1st international workshop on Sensing and Big data mining, SenseMine 2013
作者: Bouillet, Eric Chen, Bei Cooper, Chris Dahlem, Dominik Verscheure, Olivier IBM Research Ireland Ireland IBM UK United Kingdom
Transport authorities have been deploying and utilising sensor infrastructures in order to improve upon the level of transport-related services within cities. As existing resources are more and more constrained, novel... 详细信息
来源: 评论
learning with configurable operators and RL-based heuristics
Learning with configurable operators and RL-based heuristics
收藏 引用
1st international workshop on New Frontiers in mining Complex patterns, NFMCP 2012
作者: Martínez-Plumed, Fernando Ferri, Cèsar Hernández-Orallo, José Ramírez-Quintana, María José DSIC Universitat Politècnica de València Camí de Vera s/n 46022 València Spain
In this paper, we push forward the idea of machine learning systems for which the operators can be modified and finetuned for each problem. This allows us to propose a learning paradigm where users can write (or adapt... 详细信息
来源: 评论
Building statistical Language Models of code
Building Statistical Language Models of code
收藏 引用
international workshop on data Analysis patterns in Software Engineering (DAPSE)
作者: Peter Schulam Roni Rosenfeld Premkumar Devanbu Language Technologies Institute Carnegie Mellon University USA Department of Computer Science University of California Davis USA
We present the Source Code statistical Language Model data analysis pattern. statistical language models have been an enabling tool for a wide array of important language technologies. Speech recognition, machine tran... 详细信息
来源: 评论
A comparison of multivariate mutual information estimators for feature selection
A comparison of multivariate mutual information estimators f...
收藏 引用
1st international Conference on pattern recognition Applications and Methods, ICPRAM 2012
作者: Doquire, Gauthier Verleysen, Michel Machine Learning Group - ICTEAM Université Catholique de Louvain Place du Levant 3 1348 Louvain-la-Neuve Belgium
Mutual Information estimation is an important task for many data mining and machine learning applications. In particular, many feature selection algorithms make use of the mutual information criterion and could thus b... 详细信息
来源: 评论
Online sequential learning based on enhanced extreme learning machine using leftor right pseudo-inverse
Online sequential learning based on enhanced extreme learnin...
收藏 引用
1st international Conference on pattern recognition Applications and Methods, ICPRAM 2012
作者: Zong, Weiwei Lan, Yuan Huang, Guang-Bin School of Electrical and Electronic Engineering Nanyang Technological University Singapore Singapore
The latest development (Huang et al., 2011) has shown that better generalization performance can be obtained for extreme learning machine (ELM) by adding a positive value to the diagonal of HT H or HHT, where H is the... 详细信息
来源: 评论
Unexpected challenges in large scale machine learning
Unexpected challenges in large scale machine learning
收藏 引用
1st international workshop on Big data, streams and Heterogeneous Source mining: Algorithms, Systems, Programming Models and Applications, BigMine-12 - Held in Conjunction with SIGKDD Conference
作者: Parker, Charles BigML Inc. 2851 NW 9th St. Corvallis OR 97330 United States
In machine learning, scale adds complexity. The most obvious consequence of scale is that data takes longer to process. At certain points, however, scale makes trivial operations costly, thus forcing us to re-evaluate... 详细信息
来源: 评论
An empirical comparison of label prediction algorithms on automatically inferred networks
An empirical comparison of label prediction algorithms on au...
收藏 引用
1st international Conference on pattern recognition Applications and Methods, ICPRAM 2012
作者: Ali, Omar Zappella, Giovanni De Bie, Tijl Cristianini, Nello Intelligent Systems Laboratory Bristol University Bristol United Kingdom Dipartimento di Matematica'F. Enriques' Universitá Degli Studi di Milano Milan Italy
The task of predicting the label of a network node, based on the labels of the remaining nodes, is an area of growing interest in machine learning, as various types of data are naturally represented as nodes in a grap... 详细信息
来源: 评论
Prototype selectioninimbalanced data for dissimilarity representation: A preliminary study
Prototype selectioninimbalanced data for dissimilarity repre...
收藏 引用
1st international Conference on pattern recognition Applications and Methods, ICPRAM 2012
作者: Millán-Giraldo, Mónica García, Vicente Sánchez, J. Salvador Institute of New Imaging Technologies Universitat Jaume I Av. Sos Baynat s/n 12071 Castellón de la Plana Spain
In classification problems, the dissimilarity representation has shown to be more robust than using the feature space. In order to build the dissimilarity space, a representation set of r objects is used. Several meth... 详细信息
来源: 评论