咨询与建议

限定检索结果

文献类型

  • 550 篇 会议
  • 28 篇 期刊文献
  • 7 册 图书

馆藏范围

  • 585 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 470 篇 工学
    • 425 篇 计算机科学与技术...
    • 199 篇 软件工程
    • 110 篇 电气工程
    • 67 篇 信息与通信工程
    • 45 篇 生物工程
    • 42 篇 生物医学工程(可授...
    • 26 篇 控制科学与工程
    • 20 篇 光学工程
    • 13 篇 仪器科学与技术
    • 11 篇 机械工程
    • 10 篇 化学工程与技术
    • 9 篇 交通运输工程
    • 8 篇 电子科学与技术(可...
    • 7 篇 土木工程
  • 140 篇 理学
    • 69 篇 数学
    • 56 篇 生物学
    • 33 篇 物理学
    • 24 篇 统计学(可授理学、...
    • 19 篇 系统科学
    • 8 篇 化学
  • 90 篇 管理学
    • 63 篇 图书情报与档案管...
    • 35 篇 管理科学与工程(可...
    • 19 篇 工商管理
  • 46 篇 医学
    • 36 篇 临床医学
    • 22 篇 基础医学(可授医学...
    • 13 篇 药学(可授医学、理...
    • 7 篇 特种医学
    • 6 篇 公共卫生与预防医...
  • 11 篇 法学
    • 9 篇 社会学
  • 11 篇 教育学
    • 10 篇 教育学
  • 8 篇 经济学
  • 6 篇 农学

主题

  • 74 篇 machine learning
  • 55 篇 data mining
  • 36 篇 pattern recognit...
  • 33 篇 deep learning
  • 20 篇 feature extracti...
  • 18 篇 artificial intel...
  • 16 篇 support vector m...
  • 15 篇 learning systems
  • 11 篇 image classifica...
  • 9 篇 training
  • 8 篇 neural networks
  • 8 篇 face recognition
  • 8 篇 manifold learnin...
  • 8 篇 supervised learn...
  • 7 篇 pattern classifi...
  • 7 篇 big data
  • 7 篇 clustering algor...
  • 7 篇 classification (...
  • 7 篇 machine learning...
  • 7 篇 data models

机构

  • 4 篇 ukrainian cathol...
  • 3 篇 harbin inst tech...
  • 3 篇 guilin univ elec...
  • 3 篇 fujian univ tech...
  • 3 篇 college of compu...
  • 3 篇 kunming univ col...
  • 3 篇 nanjing univ sci...
  • 3 篇 concordia univ d...
  • 2 篇 shanghai jiao to...
  • 2 篇 australian e-hea...
  • 2 篇 telangana hydera...
  • 2 篇 key lab data gov...
  • 2 篇 idiap ch-1920 ma...
  • 2 篇 department of ma...
  • 2 篇 univ toronto dep...
  • 2 篇 univ montreal di...
  • 2 篇 chitkara univers...
  • 2 篇 natl univ singap...
  • 2 篇 pattern analysis...
  • 2 篇 univ katolik ind...

作者

  • 3 篇 li junbao
  • 3 篇 maier andreas
  • 3 篇 bengio s
  • 3 篇 deepa r.
  • 3 篇 deng fei
  • 3 篇 pan jeng-shyang
  • 3 篇 hu cong
  • 3 篇 zhang daoqiang
  • 3 篇 amelio alessia
  • 3 篇 maier-hein klaus
  • 3 篇 he chunhui
  • 2 篇 vrahatis aristid...
  • 2 篇 jin zhong
  • 2 篇 collobert r
  • 2 篇 tax dmj
  • 2 篇 sharma r
  • 2 篇 cilia nicole dal...
  • 2 篇 fontanella franc...
  • 2 篇 genov r
  • 2 篇 stiefelhagen rai...

语言

  • 568 篇 英文
  • 12 篇 中文
  • 9 篇 其他
  • 1 篇 俄文
检索条件"任意字段=1st International Workshop on Machine Learning and Data Mining in Pattern Recognition"
585 条 记 录,以下是31-40 订阅
排序:
A Discretization Algorithm of Continuous Attributes Based on Supervised Clustering
A Discretization Algorithm of Continuous Attributes Based on...
收藏 引用
Chinese Conference on pattern recognition/1st CJK Joint workshop on pattern recognition
作者: Hua, Haiyang Zhao, Huaici Chinese Acad Sci Shenyang Inst Automat Shenyang 110016 Peoples R China
Many machine learning algorithms can be applied only to data described by categorical attributes. So discretizatioti of continuous attributes is one of the important steps in preprocessing of extracting knowledge. Tra... 详细信息
来源: 评论
Scaling large learning problems with hard parallel mixtures
收藏 引用
international JOURNAL OF pattern recognition AND ARTIFICIAL INTELLIGENCE 2003年 第3期17卷 349-365页
作者: Collobert, R Bengio, Y Bengio, S IDIAP CH-1920 Martigny Switzerland Univ Montreal DIRO Montreal PQ Canada
A challenge for statistical learning is to deal with large data sets, e.g. in data mining. The training time of ordinary Support Vector machines is at least quadratic, which raises a serious research challenge if we w... 详细信息
来源: 评论
Collaborative scheduling algorithm for full quantity materials based on process and machine learning  24
Collaborative scheduling algorithm for full quantity materia...
收藏 引用
1st international Conference on Image Processing machine learning and pattern recognition
作者: Gu, Sanlin State Grid Gansu Power Supply Co Nanjing Peoples R China
Participants in the supply chain may have different information, leading to incomplete or inaccurate information when making decisions. To this end, a process and machine learning based collaborative scheduling algori... 详细信息
来源: 评论
machine learning paradigms for utility-based data mining
Machine learning paradigms for utility-based data mining
收藏 引用
1st international workshop on Utility-Based data mining, UBDM '05
作者: Abe, Naoki IBM T. J. Watson Research Center P.O. Box 218 Yorktown Heights NY 10598 United States
In this talk, I will describe a number of machine learning paradigms that are relevant to utility-based data mining, and review some key techniques and results in each. Copyright 2005 ACM.
来源: 评论
Graph-based relational learning with application to security
收藏 引用
FUNDAMENTA INFORMATICAE 2005年 第1-2期66卷 83-101页
作者: Holder, L Cook, D Coble, J Mukherjee, M Univ Texas Dept Comp Sci & Engn Arlington TX 76019 USA
We describe an approach to learning patterns in relational data represented as a graph. The approach, implemented in the Subdue system, searches for patterns that maximally compress the input graph. Subdue can be used... 详细信息
来源: 评论
Sequential exceptional pattern discovery using pattern-growth: An extensible framework for interpretable machine learning on sequential data  1
Sequential exceptional pattern discovery using pattern-growt...
收藏 引用
1st international workshop on Explainable and Interpretable machine learning, XI-ML 2020
作者: Mollenhauer, Dennis Atzmueller, Martin University of Kassel Wilhelmshöher Allee 73 Kassel34121 Germany Tilburg University Warandelaan 2 Tilburg5037 AB Netherlands
Interpretable machine learning on complex data requires adequate cos-tumizable as well as scalable computational analysis methods. This paper presents a framework combining the paradigms of exceptional model mining wi... 详细信息
来源: 评论
Nonlinear function learning and classification using optimal radial basis function networks
收藏 引用
2nd international workshop on machine learning and data mining in pattern recognition
作者: Krzyzak, A Concordia Univ Dept Comp Sci Montreal PQ H3G 1M8 Canada
We derive optimal radial kernel in the radial basis function network applied in nonlinear function learning and classification.
来源: 评论
Unsupervised EEG Analysis for Automated Epileptic Seizure Detection  1
Unsupervised EEG Analysis for Automated Epileptic Seizure De...
收藏 引用
1st international workshop on pattern recognition (IWPR)
作者: Birjandtalab, Javad Pouyan, Maziyar Baran Nourani, Mehrdad Univ Texas Richardson Qual Life Technol Lab Richardson TX 75080 USA
Epilepsy is a neurological disorder which can, if not controlled, potentially cause unexpected death. It is extremely crucial to have accurate automatic pattern recognition and data mining techniques to detect the ons... 详细信息
来源: 评论
Typhoon analysis and data mining with kernel methods  1st
Typhoon analysis and data mining with kernel methods
收藏 引用
1st international workshop on pattern recognition with Support Vector machines
作者: Kitamoto, A Natl Inst Informat Chiyoda Ku Tokyo 1018430 Japan
The analysis of the typhoon is based on the manual pattern recognition of cloud patterns on meteorological satellite images by human experts, but this process may be unstable and unreliable, and we think could be impr... 详细信息
来源: 评论
Neural Networks in MR image estimation from sparsely sampled scans  1st
Neural Networks in MR image estimation from sparsely sampled...
收藏 引用
1st international workshop on machine learning and data mining in pattern recognition
作者: Reczko, M Karras, DA Mertzios, V Graveron-Demilly, D van Ormondt, D Democritus Univ Thrace GR-67100 Xanthi Greece Univ Piraeus Dept Business Adm Athens 16342 Greece Univ Lyon 1 CPE CNRS UPRESA 5012 Lab RMN F-69365 Lyon France Delft Univ Technol Dept Appl Phys NL-2600 GA Delft Netherlands
This paper concerns a novel application of machine learning to Magnetic Resonance Imaging (MRI) by considering Neural Network models for the problem of image estimation from sparsely sampled k-space. Effective solutio... 详细信息
来源: 评论