咨询与建议

限定检索结果

文献类型

  • 550 篇 会议
  • 28 篇 期刊文献
  • 7 册 图书

馆藏范围

  • 585 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 470 篇 工学
    • 425 篇 计算机科学与技术...
    • 199 篇 软件工程
    • 110 篇 电气工程
    • 67 篇 信息与通信工程
    • 45 篇 生物工程
    • 42 篇 生物医学工程(可授...
    • 26 篇 控制科学与工程
    • 20 篇 光学工程
    • 13 篇 仪器科学与技术
    • 11 篇 机械工程
    • 10 篇 化学工程与技术
    • 9 篇 交通运输工程
    • 8 篇 电子科学与技术(可...
    • 7 篇 土木工程
  • 140 篇 理学
    • 69 篇 数学
    • 56 篇 生物学
    • 33 篇 物理学
    • 24 篇 统计学(可授理学、...
    • 19 篇 系统科学
    • 8 篇 化学
  • 90 篇 管理学
    • 63 篇 图书情报与档案管...
    • 35 篇 管理科学与工程(可...
    • 19 篇 工商管理
  • 46 篇 医学
    • 36 篇 临床医学
    • 22 篇 基础医学(可授医学...
    • 13 篇 药学(可授医学、理...
    • 7 篇 特种医学
    • 6 篇 公共卫生与预防医...
  • 11 篇 法学
    • 9 篇 社会学
  • 11 篇 教育学
    • 10 篇 教育学
  • 8 篇 经济学
  • 6 篇 农学

主题

  • 74 篇 machine learning
  • 55 篇 data mining
  • 36 篇 pattern recognit...
  • 33 篇 deep learning
  • 20 篇 feature extracti...
  • 18 篇 artificial intel...
  • 16 篇 support vector m...
  • 15 篇 learning systems
  • 11 篇 image classifica...
  • 9 篇 training
  • 8 篇 neural networks
  • 8 篇 face recognition
  • 8 篇 manifold learnin...
  • 8 篇 supervised learn...
  • 7 篇 pattern classifi...
  • 7 篇 big data
  • 7 篇 clustering algor...
  • 7 篇 classification (...
  • 7 篇 machine learning...
  • 7 篇 data models

机构

  • 4 篇 ukrainian cathol...
  • 3 篇 harbin inst tech...
  • 3 篇 guilin univ elec...
  • 3 篇 fujian univ tech...
  • 3 篇 college of compu...
  • 3 篇 kunming univ col...
  • 3 篇 nanjing univ sci...
  • 3 篇 concordia univ d...
  • 2 篇 shanghai jiao to...
  • 2 篇 australian e-hea...
  • 2 篇 telangana hydera...
  • 2 篇 key lab data gov...
  • 2 篇 idiap ch-1920 ma...
  • 2 篇 department of ma...
  • 2 篇 univ toronto dep...
  • 2 篇 univ montreal di...
  • 2 篇 chitkara univers...
  • 2 篇 natl univ singap...
  • 2 篇 pattern analysis...
  • 2 篇 univ katolik ind...

作者

  • 3 篇 li junbao
  • 3 篇 maier andreas
  • 3 篇 bengio s
  • 3 篇 deepa r.
  • 3 篇 deng fei
  • 3 篇 pan jeng-shyang
  • 3 篇 hu cong
  • 3 篇 zhang daoqiang
  • 3 篇 amelio alessia
  • 3 篇 maier-hein klaus
  • 3 篇 he chunhui
  • 2 篇 vrahatis aristid...
  • 2 篇 jin zhong
  • 2 篇 collobert r
  • 2 篇 tax dmj
  • 2 篇 sharma r
  • 2 篇 cilia nicole dal...
  • 2 篇 fontanella franc...
  • 2 篇 genov r
  • 2 篇 stiefelhagen rai...

语言

  • 568 篇 英文
  • 12 篇 中文
  • 9 篇 其他
  • 1 篇 俄文
检索条件"任意字段=1st International Workshop on Machine Learning and Data Mining in Pattern Recognition"
585 条 记 录,以下是411-420 订阅
排序:
Multi-task co-clustering via nonnegative matrix factorization
Multi-task co-clustering via nonnegative matrix factorizatio...
收藏 引用
international Conference on pattern recognition
作者: Saining Xie Hongtao Lu Yangcheng He Shanghai Jiaotong University China
Recent results have empirically proved that, given several related tasks with different data distributions and an algorithm that can utilize both the task-specific and cross-task knowledge, clustering performance of e... 详细信息
来源: 评论
Classifying judging states from fMRI data of visual recognition task
Classifying judging states from fMRI data of visual recognit...
收藏 引用
2011 1st international workshop on Complexity and data mining, IWCDM 2011
作者: Ni, Huangjing Wang, Wei Pang, Chaoyi Yu, Jiayuan Department of Education Technology Educational Science College Nanjing Normal University Nanjing Jiangsu China Australian E-Health Research Centre CSIRO Australia Department of Psychology Educational Science College Nanjing Normal University Nanjing Jiangsu China
Identifying the subject's simple judging states from fMRI data is the basis of studying complex logical relationship and has great theoretical significance. In this paper, we study judging states from fMRI data in... 详细信息
来源: 评论
data quality assurance and performance measurement of data mining for preventive maintenance of power grid
Data quality assurance and performance measurement of data m...
收藏 引用
1st international workshop on data mining for Service and Maintenance, KDD4Service 2011 - Held in Conjunction with SIGKDD'11
作者: Wu, Leon Kaiser, Gail Rudin, Cynthia Anderson, Roger Department of Computer Science Columbia University New York NY 10027 United States MIT Sloan School of Management MIT Cambridge MA 02139 United States Center for Computational Learning Systems Columbia University New York NY 10115 United States
Ensuring reliability as the electrical grid morphs into the "smart grid" will require innovations in how we assess the state of the grid, for the purpose of proactive maintenance, rather than reactive mainte... 详细信息
来源: 评论
On the Usefulness of Similarity Based Projection Spaces for Transfer learning
收藏 引用
1st international workshop on Similarity-Based pattern recognition (SIMBAD)
作者: Morvant, Emilie Habrard, Amaury Ayache, stephane Aix Marseille Univ Lab Informat Fondamentale Marseille CNRS UMR 6166 F-13453 Marseille 13 France
Similarity functions are widely used in many machine learning or pattern recognition tasks. We consider here a recent framework for binary classification, proposed by Balcan et al., allowing to learn in a potentially ... 详细信息
来源: 评论
Combining data Sources Nonlinearly for Cell Nucleus Classification of Renal Cell Carcinoma
收藏 引用
1st international workshop on Similarity-Based pattern recognition (SIMBAD)
作者: Gonen, Mehmet Ulas, Aydin Schueffler, Peter Castellani, Umberto Murino, Vittorio Aalto Univ Sch Sci Dept Informat & Comp Sci HIIT Espoo Finland Univ Verona Dept Comp Sci Verona Italy ETH Dept Comp Sci Zurich Switzerland IIT Genoa Italy
In kernel-based machine learning algorithms, we can learn a combination of different kernel functions in order to obtain a similarity measure that better matches the underlying problem instead of using a single fixed ... 详细信息
来源: 评论
Multiple-Instance learning with Instance Selection via Dominant Sets
收藏 引用
1st international workshop on Similarity-Based pattern recognition (SIMBAD)
作者: Erdem, Aykut Erdem, Erkut Hacettepe Univ TR-06800 Ankara Turkey
Multiple-instance learning (MIL) deals with learning under ambiguity, in which patterns to be classified are described by bags of instances. There has been a growing interest in the design and use of MIL algorithms as... 详细信息
来源: 评论
Model-Based Clustering of Inhomogeneous Paired Comparison data
收藏 引用
1st international workshop on Similarity-Based pattern recognition (SIMBAD)
作者: Busse, Ludwig M. Buhmann, Joachim M. ETH Dept Comp Sci CH-8092 Zurich Switzerland
This paper demonstrates the derivation of a clustering model for paired comparison data. Similarities for non-Euclidean, ordinal data are handled in the model such that it is capable of performing an integrated analys... 详细信息
来源: 评论
Similarity-Based pattern recognition - First international workshop, SIMBAD 2011, Proceedings
Similarity-Based Pattern Recognition - First International W...
收藏 引用
1st international workshop on Similarity-Based pattern recognition, SIMBAD 2011
The proceedings contain 23 papers. The topics discussed include: on the usefulness of similarity based projection spaces for transfer learning;metric anomaly detection via asymmetric risk minimization;one shot similar...
来源: 评论
Novel Supervised Feature Extraction Algorithm Based on Iterative Calculations
Novel Supervised Feature Extraction Algorithm Based on Itera...
收藏 引用
12th IEEE international Conference on Information Reuse and Integration (IRI)/1st international workshop on Issues and Challenges in Social Computing (WICSOC)
作者: Takeuchi, Yohei Ito, Momoyo Kashihara, Koji Fukumi, Minoru Univ Tokushima Grad Sch Adv Technol & Sci Tokushima 770 Japan
In pattern recognition, the principal component analysis (PCA) is one of the most famous feature extraction methods for dimensionality reduction of high-dimensional datasets. Furthermore, Simple-PCA (SPCA) which is a ... 详细信息
来源: 评论
pattern recognition using statistical and neural techniques
Pattern recognition using statistical and neural techniques
收藏 引用
1st international Conference on Computer Networks and Information Technology, ICCNIT'11
作者: Ahmad, Tasweer Jameel, Ahlam Ahmad, Balal Government College University Lahore Pakistan
pattern recognition has become an attractive research oriented field of the computer vision and machine learning for the last few decades. Neural pattern recognition techniques are also being exercised for pattern rec... 详细信息
来源: 评论