咨询与建议

限定检索结果

文献类型

  • 550 篇 会议
  • 28 篇 期刊文献
  • 7 册 图书

馆藏范围

  • 585 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 470 篇 工学
    • 425 篇 计算机科学与技术...
    • 199 篇 软件工程
    • 110 篇 电气工程
    • 67 篇 信息与通信工程
    • 45 篇 生物工程
    • 42 篇 生物医学工程(可授...
    • 26 篇 控制科学与工程
    • 20 篇 光学工程
    • 13 篇 仪器科学与技术
    • 11 篇 机械工程
    • 10 篇 化学工程与技术
    • 9 篇 交通运输工程
    • 8 篇 电子科学与技术(可...
    • 7 篇 土木工程
  • 140 篇 理学
    • 69 篇 数学
    • 56 篇 生物学
    • 33 篇 物理学
    • 24 篇 统计学(可授理学、...
    • 19 篇 系统科学
    • 8 篇 化学
  • 90 篇 管理学
    • 63 篇 图书情报与档案管...
    • 35 篇 管理科学与工程(可...
    • 19 篇 工商管理
  • 46 篇 医学
    • 36 篇 临床医学
    • 22 篇 基础医学(可授医学...
    • 13 篇 药学(可授医学、理...
    • 7 篇 特种医学
    • 6 篇 公共卫生与预防医...
  • 11 篇 法学
    • 9 篇 社会学
  • 11 篇 教育学
    • 10 篇 教育学
  • 8 篇 经济学
  • 6 篇 农学

主题

  • 74 篇 machine learning
  • 55 篇 data mining
  • 36 篇 pattern recognit...
  • 33 篇 deep learning
  • 20 篇 feature extracti...
  • 18 篇 artificial intel...
  • 16 篇 support vector m...
  • 15 篇 learning systems
  • 11 篇 image classifica...
  • 9 篇 training
  • 8 篇 neural networks
  • 8 篇 face recognition
  • 8 篇 manifold learnin...
  • 8 篇 supervised learn...
  • 7 篇 pattern classifi...
  • 7 篇 big data
  • 7 篇 clustering algor...
  • 7 篇 classification (...
  • 7 篇 machine learning...
  • 7 篇 data models

机构

  • 4 篇 ukrainian cathol...
  • 3 篇 harbin inst tech...
  • 3 篇 guilin univ elec...
  • 3 篇 fujian univ tech...
  • 3 篇 college of compu...
  • 3 篇 kunming univ col...
  • 3 篇 nanjing univ sci...
  • 3 篇 concordia univ d...
  • 2 篇 shanghai jiao to...
  • 2 篇 australian e-hea...
  • 2 篇 telangana hydera...
  • 2 篇 key lab data gov...
  • 2 篇 idiap ch-1920 ma...
  • 2 篇 department of ma...
  • 2 篇 univ toronto dep...
  • 2 篇 univ montreal di...
  • 2 篇 chitkara univers...
  • 2 篇 natl univ singap...
  • 2 篇 pattern analysis...
  • 2 篇 univ katolik ind...

作者

  • 3 篇 li junbao
  • 3 篇 maier andreas
  • 3 篇 bengio s
  • 3 篇 deepa r.
  • 3 篇 deng fei
  • 3 篇 pan jeng-shyang
  • 3 篇 hu cong
  • 3 篇 zhang daoqiang
  • 3 篇 amelio alessia
  • 3 篇 maier-hein klaus
  • 3 篇 he chunhui
  • 2 篇 vrahatis aristid...
  • 2 篇 jin zhong
  • 2 篇 collobert r
  • 2 篇 tax dmj
  • 2 篇 sharma r
  • 2 篇 cilia nicole dal...
  • 2 篇 fontanella franc...
  • 2 篇 genov r
  • 2 篇 stiefelhagen rai...

语言

  • 568 篇 英文
  • 12 篇 中文
  • 9 篇 其他
  • 1 篇 俄文
检索条件"任意字段=1st International Workshop on Machine Learning and Data Mining in Pattern Recognition"
585 条 记 录,以下是411-420 订阅
排序:
Unsupervised Representation learning with Attention and Sequence to Sequence Autoencoders to Predict Sleepiness from Speech  1
Unsupervised Representation Learning with Attention and Sequ...
收藏 引用
1st international Multimodal Sentiment Analysis in Real-Life Media Challenge and workshop, MuSe 2020
作者: Amiriparian, Shahin Winokurow, Pawel Karas, Vincent Ottl, Sandra Gerczuk, Maurice Schuller, Björn Chair of Embedded Intelligence for Health Care and Wellbeing University of Augsburg Augsburg Germany
Motivated by the attention mechanism of the human visual system and recent developments in the field of machine translation, we introduce our attention-based and recurrent sequence to sequence autoencoders for fully u... 详细信息
来源: 评论
A Survey on machine learning Approaches in Water Analysis  13th
A Survey on Machine Learning Approaches in Water Analysis
收藏 引用
13th mining Humanistic data workshop, MHDW 2024, 9th workshop on 5G-Putting Intelligence to the Network Edge, 5G-PINE 2024 and 1st workshop on AI in Applications for Achieving the Green Deal Targets, AI4GD 2024 held as parallel events of the IFIP WG 12.5 international workshops on Artificial Intelligence Applications and Innovations, AIAI 2024
作者: Tsimpidi, Ilektra Sartjärvi, Rosa Juntunen, Petri Nikolakopoulos, George Robotics and AI Team Department of Computer Science Space and Electrical Engineering Luleå University of Technology Luleå Sweden Savonia University of Applied Sciences Kuopio Finland
The aim of this article is to present a survey on machine learning approaches for performing water analysis as in general integrating Artificial Intelligence in water analysis has a transformative potential for optimi... 详细信息
来源: 评论
Experimental evaluation on machine learning techniques for human activities recognition in digital education context  1
收藏 引用
1st international workshop on Social Computing in Digital Education, SOCIALEDU 2015
作者: Leitão, Gabriel Colonna, Juan Ribeiro, Erick Barreto, Raimundo Araujo, Thierry-Yves Martins, Anny Koster, Andrew Koch, Fernando Manaus Brazil Samsung Research Institute CampinasSP France
This paper describes an experimental evaluation of the main machine learning supervised techniques to be used for the human activities recognition in the context of technological education using data collected from sm... 详细信息
来源: 评论
Combining fisher linear discriminants for dissimilarity representations  1
收藏 引用
1st international workshop on Multiple Classifier Systems, MCS 2000
作者: Pȩkalska, Elzbieta Skurichina, Marina Duin, Robert P.W. Pattern Recognition Group Department of Applied Physics Faculty of Applied Sciences Lorentzweg 1 2628 CJ Delft Netherlands
Investigating a data set of the critical size makes a classification task difficult. studying dissimilarity data refers to such a problem, since the number of samples equals their dimensionality. In such a case, a sim... 详细信息
来源: 评论
ENSIOT: A stacking Ensemble learning Approach for IoT Device Identification  32
ENSIOT: A Stacking Ensemble Learning Approach for IoT Device...
收藏 引用
IEEE/ACM 32nd international Symposium on Quality of Service (IWQoS)
作者: Niu, Kangli Liu, Shenghao Yi, Lingzhi Deng, Xianjun Chen, Suning Yang, Laurence T. Cheng, Minmin Hubei Key Lab Distributed Syst Secur Wuhan Peoples R China Hubei Engn Res Ctr Big Data Secur Wuhan Peoples R China Huazhong Univ Sci & Technol Sch Cyber Sci & Engn Wuhan Peoples R China Zhongnan Univ Econ & Law Sch Informat & Safety Engn Wuhan Peoples R China
In order to resist network attacks on IoT devices, identifying IoT devices is the first step for ensuring device security. The traditional passive method identifies IoT devices by mining the potential relationship bet... 详细信息
来源: 评论
Support vector learning for gender classification using audio and visual cues
收藏 引用
international JOURNAL OF pattern recognition AND ARTIFICIAL INTELLIGENCE 2003年 第3期17卷 417-439页
作者: Walavalkar, L Yeasin, M Narasimhamurthy, A Sharma, R Penn State Univ Dept Comp Sci Pond Lab 220 University Pk PA 16802 USA
Computer vision systems for monitoring people and collecting valuable demographic information in a social environment is an important research problem. It is expected that such a system will play an increasingly impor... 详细信息
来源: 评论
The massive data classifiers based on reduced set vectors method  1
The massive data classifiers based on reduced set vectors me...
收藏 引用
1st international Conference on Communications, Circuits and Systems, ICCCAS 2002
作者: Ding, Ai-Ling Liu, Fang Zhao, Xiang-Mo Computer School Xidian University Xi'an710071 China Institute of Information and Engineering Chang-An University Xi'an710064 China
A support vector machine (SVM) is a universal learning machine whose decision surface is parameterized by a set of support vectors. SVMs find application in pattern recognition, regression estimation, and operator inv... 详细信息
来源: 评论
Leveraging Semi-Supervised learning to Enhance data mining for Image Classification under Limited Labeled data  4
Leveraging Semi-Supervised Learning to Enhance Data Mining f...
收藏 引用
4th international Conference on Electronic Information Engineering and Computer Communication, EIECC 2024
作者: Shen, Aoran Dai, Minghao Hu, Jiacheng Liang, Yingbin Wang, Shiru Du, Junliang University of Michigan Ann Arbor United States Columbia University New York United States Tulane University New Orleans United States Northeastern University Seattle United States Dartmouth College Hanover United States Shanghai Jiao Tong University Shanghai China
In the 21st-century information age, with the development of big data technology, effectively extracting valuable information from massive data has become a key issue. Traditional data mining methods are inadequate wh... 详细信息
来源: 评论
A fast SVM training algorithm  1st
A fast SVM training algorithm
收藏 引用
1st international workshop on pattern recognition with Support Vector machines, SVM 2002
作者: Dong, Jian-Xiong Krzyżak, Adam Suen, Ching Y. Centre for Pattern Recognition and Machine Intelligence Concordia University MontrealQCH3G 1M8 Canada Department of Computer Science Concordia University 1455 de Maisonneuve Blvd. W MontrealQCH3G 1M8 Canada
A fast support vector machine (SVM) training algorithm is proposed under the decomposition framework of SVM’s algorithm by effectively integrating kernel caching, digest and shrinking policies and stopping conditions... 详细信息
来源: 评论
Multi-agent monitoring system for heat loss mapping of multi-story buildings  1
Multi-agent monitoring system for heat loss mapping of multi...
收藏 引用
1st international workshop on Information-Communication Technologies and Embedded Systems, ICT and ES 2019
作者: Burlachenko, Ivan Zhuravska, Iryna Tohoiev, Oleksii Ukhan, Yehor Tiutiunyk, Yevhen Petro Mohyla Black Sea National University Mykolaiv Ukraine LeadsMarket LLC Woodland HillsCA United States
In this paper, the problem of developing a multi-agent method for detecting the places of heat energy leaks on the multi-story buildings using machine learning is solved. Efficient data processing of scanning areas fo... 详细信息
来源: 评论