咨询与建议

限定检索结果

文献类型

  • 550 篇 会议
  • 28 篇 期刊文献
  • 2 册 图书

馆藏范围

  • 580 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 470 篇 工学
    • 425 篇 计算机科学与技术...
    • 199 篇 软件工程
    • 110 篇 电气工程
    • 67 篇 信息与通信工程
    • 45 篇 生物工程
    • 42 篇 生物医学工程(可授...
    • 26 篇 控制科学与工程
    • 20 篇 光学工程
    • 13 篇 仪器科学与技术
    • 11 篇 机械工程
    • 10 篇 化学工程与技术
    • 9 篇 交通运输工程
    • 8 篇 电子科学与技术(可...
    • 7 篇 土木工程
  • 140 篇 理学
    • 69 篇 数学
    • 56 篇 生物学
    • 33 篇 物理学
    • 24 篇 统计学(可授理学、...
    • 19 篇 系统科学
    • 8 篇 化学
  • 90 篇 管理学
    • 63 篇 图书情报与档案管...
    • 35 篇 管理科学与工程(可...
    • 19 篇 工商管理
  • 46 篇 医学
    • 36 篇 临床医学
    • 22 篇 基础医学(可授医学...
    • 13 篇 药学(可授医学、理...
    • 7 篇 特种医学
    • 6 篇 公共卫生与预防医...
  • 11 篇 法学
    • 9 篇 社会学
  • 11 篇 教育学
    • 10 篇 教育学
  • 8 篇 经济学
  • 6 篇 农学

主题

  • 72 篇 machine learning
  • 55 篇 data mining
  • 34 篇 pattern recognit...
  • 33 篇 deep learning
  • 20 篇 feature extracti...
  • 16 篇 support vector m...
  • 15 篇 learning systems
  • 15 篇 artificial intel...
  • 11 篇 image classifica...
  • 9 篇 training
  • 8 篇 neural networks
  • 8 篇 face recognition
  • 8 篇 manifold learnin...
  • 8 篇 supervised learn...
  • 7 篇 pattern classifi...
  • 7 篇 big data
  • 7 篇 clustering algor...
  • 7 篇 classification (...
  • 7 篇 machine learning...
  • 7 篇 data models

机构

  • 4 篇 ukrainian cathol...
  • 3 篇 harbin inst tech...
  • 3 篇 guilin univ elec...
  • 3 篇 fujian univ tech...
  • 3 篇 college of compu...
  • 3 篇 kunming univ col...
  • 3 篇 nanjing univ sci...
  • 3 篇 concordia univ d...
  • 2 篇 shanghai jiao to...
  • 2 篇 australian e-hea...
  • 2 篇 telangana hydera...
  • 2 篇 key lab data gov...
  • 2 篇 idiap ch-1920 ma...
  • 2 篇 department of ma...
  • 2 篇 univ toronto dep...
  • 2 篇 univ montreal di...
  • 2 篇 chitkara univers...
  • 2 篇 natl univ singap...
  • 2 篇 pattern analysis...
  • 2 篇 univ katolik ind...

作者

  • 3 篇 li junbao
  • 3 篇 maier andreas
  • 3 篇 bengio s
  • 3 篇 deepa r.
  • 3 篇 deng fei
  • 3 篇 pan jeng-shyang
  • 3 篇 hu cong
  • 3 篇 zhang daoqiang
  • 3 篇 amelio alessia
  • 3 篇 maier-hein klaus
  • 3 篇 he chunhui
  • 2 篇 vrahatis aristid...
  • 2 篇 jin zhong
  • 2 篇 collobert r
  • 2 篇 tax dmj
  • 2 篇 sharma r
  • 2 篇 cilia nicole dal...
  • 2 篇 fontanella franc...
  • 2 篇 genov r
  • 2 篇 stiefelhagen rai...

语言

  • 563 篇 英文
  • 12 篇 中文
  • 9 篇 其他
  • 1 篇 俄文
检索条件"任意字段=1st International Workshop on Machine Learning and Data Mining in Pattern Recognition"
580 条 记 录,以下是441-450 订阅
排序:
A New Algorithm of pattern recognition Based on RBF Neural Network and Monkey-King Genetic Algorithm
A New Algorithm of Pattern Recognition Based on RBF Neural N...
收藏 引用
1st international workshop on Education Technology and Computer Science
作者: Yin, Ximing Yan, Ying Chengdu Text Coll Basic Dept Chengdu Peoples R China North China Elect Power Univ Dept Econ & Management Baoding Peoples R China
A new algorithm of pattern recognition based on RBF neural network and Monkey-King genetic algorithm (MK-RBFNN) is prsented. The algorithm includes two parts. The first parts is that Monkey-King genetic algorithm is i... 详细信息
来源: 评论
Relative Distance-based Laplacian Eigenmaps
Relative Distance-based Laplacian Eigenmaps
收藏 引用
Chinese Conference on pattern recognition/1st CJK Joint workshop on pattern recognition
作者: Zhong, Guoqiang Hou, Xinwen Liu, Cheng-Lin Chinese Acad Sci Inst Automat NLPR Beijing 100190 Peoples R China
In many areas of pattern recognition and machine learning, low dimensional data are often embedded in a high dimensional space. There have been many dimensionality reduction and manifold learning methods to discover t... 详细信息
来源: 评论
Neighborhood Balance Embedding for Unsupervised Dimensionality Reduction
Neighborhood Balance Embedding for Unsupervised Dimensionali...
收藏 引用
Chinese Conference on pattern recognition/1st CJK Joint workshop on pattern recognition
作者: Sun, Mingming Liu, Chuancai Yang, Jingyu Nanjing Univ Sci & Technol Dept Comp Sci Nanjing 210094 Peoples R China
Various of manifold learning methods have been proposed to capture the intrinsic characteristic of nonlinear data. However, when confronting highly nonlinear data sets, existing algorithms may fail to discover the cor... 详细信息
来源: 评论
A Unified Framework for Kernelization: the Empirical Kernel Feature Space
A Unified Framework for Kernelization: the Empirical Kernel ...
收藏 引用
Chinese Conference on pattern recognition/1st CJK Joint workshop on pattern recognition
作者: Xiong, Huilin Shanghai Jiao Tong Univ Inst Image Proc & Pattern Recognit Shanghai 200240 Peoples R China
In this paper, we propose to kernelize linear learning machines, e.g., PCA and LDA, in the empirical kernel feature space, a finite-dimensional embedding space, in which the distances of the data in the kernel feature... 详细信息
来源: 评论
Global Sparse Representation Projections for Feature Extraction and Classification
Global Sparse Representation Projections for Feature Extract...
收藏 引用
Chinese Conference on pattern recognition/1st CJK Joint workshop on pattern recognition
作者: Lai, Zhihui Jin, Zhong Yang, Jian Nanjing Univ Sci & Technol Sch Comp Sci & Technol Nanjing 210094 Peoples R China
In this paper, we propose a novel supervised learning method called Global Sparse Representation Projections (GSRP) for linear dimensionality reduction. GSRP can be viewed as a combiner of sparse representation and ma... 详细信息
来源: 评论
Local Discriminant Space Alignment
Local Discriminant Space Alignment
收藏 引用
Chinese Conference on pattern recognition/1st CJK Joint workshop on pattern recognition
作者: Wu, Songsong Li, Yongzhi Yang, Jingyu Nanjing Univ Sci & Technol Sch Comp Sci & Technol Nanjing 210094 Peoples R China Nanjing Univ Sch Informat Sci & Technol Nanjing 210037 Peoples R China
Dimensionality reduction has been demonstrated to be an effective way for feature extraction in the pattern recognition task. In this paper, a new manifold learning algorithm, Local Discriminant Space Alignment (LDSA)... 详细信息
来源: 评论
Application of PrefixSpan* Algorithm in Malware Detection Expert System
Application of PrefixSpan* Algorithm in Malware Detection Ex...
收藏 引用
1st international workshop on Education Technology and Computer Science
作者: Wang, Lina Tan, Xiaobin Pan, Jianfeng Xi, Hongsheng Univ Sci & Technol China Dept Automat Hefei 230026 Peoples R China
Malware detection is an important application of data mining. Most of the previously developed sequential pattern mining methods are Apriori-like, which still encounters problems when a sequence database is large and/... 详细信息
来源: 评论
Histogram-Based Fisher Information Embedding for Manifolds Clustering and Visualization
Histogram-Based Fisher Information Embedding for Manifolds C...
收藏 引用
Chinese Conference on pattern recognition/1st CJK Joint workshop on pattern recognition
作者: Zou, Jian Liu, ChuanCai Zhang, Yue Nanjing Univ Sci & Technol Dept Comp Sci & Technol Nanjing 210094 Peoples R China
In this paper, a nonparametric histogram-based fisher information embedding method is presented for clustering and visualizing data sets with non-Euclidean geometric structures. It is on the assumption that each data ... 详细信息
来源: 评论
Decision Support System (DSS) - Form, Development and Future
Decision Support System (DSS) - Form, Development and Future
收藏 引用
1st international workshop on Education Technology and Computer Science
作者: Fang, Bin Tianjin Univ Sch Management Tianjin 300072 Peoples R China
The Decision Support System (DSS) applies various data and models to Human-machine Interface (HMI) to assist decision-makers at each level in achieving scientific decisions. The DSS was originated in 1970s, but has se... 详细信息
来源: 评论
Local Marginal Projection and Its Applications
Local Marginal Projection and Its Applications
收藏 引用
Chinese Conference on pattern recognition/1st CJK Joint workshop on pattern recognition
作者: Mao, Hong-ben Li, Yong-zhi Wu, Song-song Liu, Fen-xiang Nanjing Forestry Univ Coll Informat Sci & Technol Nanjing 210037 Peoples R China
Based on UDP and MFA, we propose a new un-supervised feature extraction algorithm, LMP (Local Marginal Projection), which is built on local quality. It measures the non-local quantities by the nearest sample between t... 详细信息
来源: 评论