咨询与建议

限定检索结果

文献类型

  • 551 篇 会议
  • 27 篇 期刊文献
  • 10 册 图书

馆藏范围

  • 588 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 470 篇 工学
    • 426 篇 计算机科学与技术...
    • 199 篇 软件工程
    • 111 篇 电气工程
    • 68 篇 信息与通信工程
    • 45 篇 生物工程
    • 42 篇 生物医学工程(可授...
    • 27 篇 控制科学与工程
    • 20 篇 光学工程
    • 12 篇 仪器科学与技术
    • 10 篇 机械工程
    • 10 篇 化学工程与技术
    • 9 篇 电子科学与技术(可...
    • 9 篇 交通运输工程
    • 6 篇 动力工程及工程热...
    • 6 篇 土木工程
  • 140 篇 理学
    • 69 篇 数学
    • 56 篇 生物学
    • 33 篇 物理学
    • 24 篇 统计学(可授理学、...
    • 19 篇 系统科学
    • 8 篇 化学
  • 91 篇 管理学
    • 63 篇 图书情报与档案管...
    • 36 篇 管理科学与工程(可...
    • 19 篇 工商管理
  • 46 篇 医学
    • 36 篇 临床医学
    • 22 篇 基础医学(可授医学...
    • 13 篇 药学(可授医学、理...
    • 7 篇 特种医学
  • 11 篇 法学
    • 9 篇 社会学
  • 11 篇 教育学
    • 10 篇 教育学
  • 8 篇 经济学
  • 6 篇 农学

主题

  • 76 篇 machine learning
  • 55 篇 data mining
  • 39 篇 pattern recognit...
  • 33 篇 deep learning
  • 20 篇 feature extracti...
  • 18 篇 artificial intel...
  • 16 篇 support vector m...
  • 15 篇 learning systems
  • 11 篇 image classifica...
  • 9 篇 training
  • 8 篇 neural networks
  • 8 篇 face recognition
  • 8 篇 manifold learnin...
  • 8 篇 supervised learn...
  • 7 篇 pattern classifi...
  • 7 篇 big data
  • 7 篇 clustering algor...
  • 7 篇 classification (...
  • 7 篇 machine learning...
  • 7 篇 data models

机构

  • 4 篇 ukrainian cathol...
  • 3 篇 harbin inst tech...
  • 3 篇 city university ...
  • 3 篇 indian institute...
  • 3 篇 murdoch universi...
  • 3 篇 auckland univers...
  • 3 篇 guilin univ elec...
  • 3 篇 fujian univ tech...
  • 3 篇 college of compu...
  • 3 篇 king fahd univer...
  • 3 篇 kunming univ col...
  • 3 篇 nanjing univ sci...
  • 3 篇 concordia univ d...
  • 2 篇 shanghai jiao to...
  • 2 篇 australian e-hea...
  • 2 篇 telangana hydera...
  • 2 篇 key lab data gov...
  • 2 篇 idiap ch-1920 ma...
  • 2 篇 department of ma...
  • 2 篇 univ toronto dep...

作者

  • 3 篇 li junbao
  • 3 篇 zohreh doborjeh
  • 3 篇 maier andreas
  • 3 篇 m. tanveer
  • 3 篇 mufti mahmud
  • 3 篇 bengio s
  • 3 篇 deepa r.
  • 3 篇 deng fei
  • 3 篇 andrew chi sing ...
  • 3 篇 kevin wong
  • 3 篇 pan jeng-shyang
  • 3 篇 hu cong
  • 3 篇 maryam doborjeh
  • 3 篇 zhang daoqiang
  • 3 篇 amelio alessia
  • 3 篇 maier-hein klaus
  • 3 篇 he chunhui
  • 2 篇 vrahatis aristid...
  • 2 篇 jin zhong
  • 2 篇 collobert r

语言

  • 550 篇 英文
  • 30 篇 其他
  • 15 篇 中文
  • 1 篇 俄文
检索条件"任意字段=1st International Workshop on Machine Learning and Data Mining in Pattern Recognition"
588 条 记 录,以下是551-560 订阅
排序:
Mirror image learning for handwritten numeral recognition
收藏 引用
2nd international workshop on machine learning and data mining in pattern recognition
作者: Shi, M Wakabayashi, T Ohyama, W Kimura, F Mie Univ Fac Engn Tsu Mie 5148507 Japan
This paper proposes a new corrective learning algorithm and evaluates the performance by handwritten numeral recognition test. The algorithm generates a mirror image of a pattern which belongs to one class of a pair o... 详细信息
来源: 评论
Concepts learning with fuzzy clustering and relevance feedback
收藏 引用
2nd international workshop on machine learning and data mining in pattern recognition
作者: Bhanu, B Dong, A Univ Calif Riverside Ctr Res Intelligent Syst Riverside CA 92521 USA
In recent years feedback approaches have been used in relating low-level image features with concepts to overcome the subjective nature of the human image interpretation. Generally, in these systems when the user star... 详细信息
来源: 评论
Dynamically organizing KDD processes
收藏 引用
international JOURNAL OF pattern recognition AND ARTIFICIAL INTELLIGENCE 2001年 第3期15卷 451-473页
作者: Zhong, N Liu, CN Ohsuga, S Maebashi Inst Technol Dept Informat Engn Maebashi Gumma 371 Japan Beijing Polytech Univ Dept Comp Sci Beijing 100022 Peoples R China Waseda Univ Sch Sci & Engn Dept Informat & Comp Sci Shinjuku Ku Tokyo 169 Japan
How to increase both autonomy and versatility of a knowledge discovery system is a core problem and a crucial aspect of KDD (Knowledge Discovery and data mining). Within the framework of the KDD process and the GLS (G... 详细信息
来源: 评论
Technology of text mining
收藏 引用
2nd international workshop on machine learning and data mining in pattern recognition
作者: Visa, A Tampere Univ Technol FIN-33101 Tampere Finland
A large amount of information is stored in databases, in intranets or in Internet. This information is organised in documents or in text documents. The difference depends on the fact if pictures, tables, figures, and ... 详细信息
来源: 评论
Local learning framework for recognition of lowercase handwritten characters
收藏 引用
2nd international workshop on machine learning and data mining in pattern recognition, MLDM 2001
作者: Dong, Jian-Xiong Krzyżak, Adam Suen, C.Y. Centre Of Pattern Recognition and Machine Intelligence Concordia University MontrealQCH3G 1M8 Canada Department of Computer Science Concordia University 1455 de Maisonneuve Blvd. W MontrealQCH3G 1M8 Canada
This paper proposes a general local learning framework to effectively alleviate the complexities of classifier design by means of "divide and conquer" principle and ensemble method. The learning framework co... 详细信息
来源: 评论
How to automate neural net based learning
收藏 引用
2nd international workshop on machine learning and data mining in pattern recognition, MLDM 2001
作者: Linder, Roland Pöppl, Siegfried J. Institute for Medical Informatics Medical University of Luebeck Ratzeburger Allee 160 D-23538 Luebeck Germany
Although neural networks have many appealing properties, yet there is neither a systematic way how to set up the topology of a neural network nor how to determine its various learning parameters. Thus an expert is nee... 详细信息
来源: 评论
FAM-based fuzzy inference for detecting shot transitions
收藏 引用
2nd international workshop on machine learning and data mining in pattern recognition, MLDM 2001
作者: Jang, Seok-Woo Kim, Gye-Young Choi, Hyung-Il Soongsil University 1-1 Sangdo-5 Dong Dong-Jak Ku Seoul Korea Republic of
We describe a fuzzy inference approach for detecting and classifying shot transitions in video sequences. Our approach basically extends FAM(Fuzzy Associative Memory) to detect and classify shot transitions, including... 详细信息
来源: 评论
1st international workshop on Multiple Classifier Systems, MCS 2000
1st International Workshop on Multiple Classifier Systems, M...
收藏 引用
1st international workshop on Multiple Classifier Systems, MCS 2000
The proceedings contain 38 papers. The special focus in this conference is on Multiple Classifier Systems. The topics include: Ensemble methods in machine learning;experiments with classifier combining rules;a survey ...
来源: 评论
Ensemble methods in machine learning  1
收藏 引用
1st international workshop on Multiple Classifier Systems (MCS 2000)
作者: Dietterich, TG Oregon State Univ Corvallis OR 97331 USA
Ensemble methods are learning algorithms that construct a set of classifiers and then classify new data points by taking a (weighted) vote of their predictions. The original ensemble method is Bayesian averaging, but ... 详细信息
来源: 评论
Combining fisher linear discriminants for dissimilarity representations  1
收藏 引用
1st international workshop on Multiple Classifier Systems, MCS 2000
作者: Pȩkalska, Elzbieta Skurichina, Marina Duin, Robert P.W. Pattern Recognition Group Department of Applied Physics Faculty of Applied Sciences Lorentzweg 1 2628 CJ Delft Netherlands
Investigating a data set of the critical size makes a classification task difficult. studying dissimilarity data refers to such a problem, since the number of samples equals their dimensionality. In such a case, a sim... 详细信息
来源: 评论