咨询与建议

限定检索结果

文献类型

  • 550 篇 会议
  • 28 篇 期刊文献
  • 7 册 图书

馆藏范围

  • 585 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 470 篇 工学
    • 425 篇 计算机科学与技术...
    • 199 篇 软件工程
    • 110 篇 电气工程
    • 67 篇 信息与通信工程
    • 45 篇 生物工程
    • 42 篇 生物医学工程(可授...
    • 26 篇 控制科学与工程
    • 20 篇 光学工程
    • 13 篇 仪器科学与技术
    • 11 篇 机械工程
    • 10 篇 化学工程与技术
    • 9 篇 交通运输工程
    • 8 篇 电子科学与技术(可...
    • 7 篇 土木工程
  • 140 篇 理学
    • 69 篇 数学
    • 56 篇 生物学
    • 33 篇 物理学
    • 24 篇 统计学(可授理学、...
    • 19 篇 系统科学
    • 8 篇 化学
  • 90 篇 管理学
    • 63 篇 图书情报与档案管...
    • 35 篇 管理科学与工程(可...
    • 19 篇 工商管理
  • 46 篇 医学
    • 36 篇 临床医学
    • 22 篇 基础医学(可授医学...
    • 13 篇 药学(可授医学、理...
    • 7 篇 特种医学
    • 6 篇 公共卫生与预防医...
  • 11 篇 法学
    • 9 篇 社会学
  • 11 篇 教育学
    • 10 篇 教育学
  • 8 篇 经济学
  • 6 篇 农学

主题

  • 74 篇 machine learning
  • 55 篇 data mining
  • 36 篇 pattern recognit...
  • 33 篇 deep learning
  • 20 篇 feature extracti...
  • 18 篇 artificial intel...
  • 16 篇 support vector m...
  • 15 篇 learning systems
  • 11 篇 image classifica...
  • 9 篇 training
  • 8 篇 neural networks
  • 8 篇 face recognition
  • 8 篇 manifold learnin...
  • 8 篇 supervised learn...
  • 7 篇 pattern classifi...
  • 7 篇 big data
  • 7 篇 clustering algor...
  • 7 篇 classification (...
  • 7 篇 machine learning...
  • 7 篇 data models

机构

  • 4 篇 ukrainian cathol...
  • 3 篇 harbin inst tech...
  • 3 篇 guilin univ elec...
  • 3 篇 fujian univ tech...
  • 3 篇 college of compu...
  • 3 篇 kunming univ col...
  • 3 篇 nanjing univ sci...
  • 3 篇 concordia univ d...
  • 2 篇 shanghai jiao to...
  • 2 篇 australian e-hea...
  • 2 篇 telangana hydera...
  • 2 篇 key lab data gov...
  • 2 篇 idiap ch-1920 ma...
  • 2 篇 department of ma...
  • 2 篇 univ toronto dep...
  • 2 篇 univ montreal di...
  • 2 篇 chitkara univers...
  • 2 篇 natl univ singap...
  • 2 篇 pattern analysis...
  • 2 篇 univ katolik ind...

作者

  • 3 篇 li junbao
  • 3 篇 maier andreas
  • 3 篇 bengio s
  • 3 篇 deepa r.
  • 3 篇 deng fei
  • 3 篇 pan jeng-shyang
  • 3 篇 hu cong
  • 3 篇 zhang daoqiang
  • 3 篇 amelio alessia
  • 3 篇 maier-hein klaus
  • 3 篇 he chunhui
  • 2 篇 vrahatis aristid...
  • 2 篇 jin zhong
  • 2 篇 collobert r
  • 2 篇 tax dmj
  • 2 篇 sharma r
  • 2 篇 cilia nicole dal...
  • 2 篇 fontanella franc...
  • 2 篇 genov r
  • 2 篇 stiefelhagen rai...

语言

  • 568 篇 英文
  • 12 篇 中文
  • 9 篇 其他
  • 1 篇 俄文
检索条件"任意字段=1st International Workshop on Machine Learning and Data Mining in Pattern Recognition"
585 条 记 录,以下是561-570 订阅
排序:
1st IEEE international workshop on Biologically Motivated Computer Vision, BMCV 2000
收藏 引用
1st IEEE international workshop on Biologically Motivated Computer Vision, BMCV 2000
The proceedings contain 64 papers. The special focus in this conference is on Segmentation, Detection, Object recognition, Computational Model and Attentive Vision. The topics include: A new framework for object categ...
来源: 评论
learning in pattern recognition  1st
Learning in pattern recognition
收藏 引用
1st international workshop on machine learning and data mining in pattern recognition
作者: Petrou, M Univ Surrey Sch Elect Engn Informat Technol & Math Guildford GU2 5XH Surrey England
learning in the context of a pattern recognition system is defined as the process that allows it to cope with real and ambiguous data. The various ways by which artificial decision systems operate are discussed in con... 详细信息
来源: 评论
A data mining application for monitoring environmental risks  1st
A data mining application for monitoring environmental risks
收藏 引用
1st international workshop on machine learning and data mining in pattern recognition
作者: Scaringella, A Consiglio Minist DSTN Serv Idrograf & Mareograf Nazl I-00185 Rome Italy Univ Rome La Sapienza CATTID Rome Italy
We describe the guidelines of a system for monitoring environmental risk situations. The system is based on data mining techniques and in particular classification trees working on the data base collected by the Itali... 详细信息
来源: 评论
Unsupervised learning of local mean gray values for image pre-processing  1st
Unsupervised learning of local mean gray values for image pr...
收藏 引用
1st international workshop on machine learning and data mining in pattern recognition
作者: Jahn, H DLR Deutsch Zentrum Luft & Raumfahrt EV Inst Weltraumsensor & Planetenerkundung D-12489 Berlin Germany
A parallel-sequential unsupervised learning method for image smoothing is presented which can be implemented with a Multi Layer Neural Network. In contrast to older work of the author which has used 4-connectivity of ... 详细信息
来源: 评论
Reproductive process-oriented data mining from interactions between human and complex artifact system  1st
Reproductive process-oriented data mining from interactions ...
收藏 引用
1st international workshop on machine learning and data mining in pattern recognition
作者: Sawaragi, T Kyoto Univ Grad Sch Engn Dept Precis Engn Kyoto 6068501 Japan
This paper presents a method for concept formation of a personal learning apprentice (PLA) system that attempts to capture users' internal conceptual structure by observing interactions between user and system. Cu... 详细信息
来源: 评论
Automatic design of multiple classifier systems by unsupervised learning  1st
Automatic design of multiple classifier systems by unsupervi...
收藏 引用
1st international workshop on machine learning and data mining in pattern recognition
作者: Giacinto, G Roli, F Univ Cagliari Dept Elect & Elect Engn I-09123 Cagliari Italy
In the field of pattern recognition, multiple classifier systems based on the combination of the outputs of a set of different classifiers have been proposed as a method for the development of high performance classif... 详细信息
来源: 评论
Neural Networks in MR image estimation from sparsely sampled scans  1st
Neural Networks in MR image estimation from sparsely sampled...
收藏 引用
1st international workshop on machine learning and data mining in pattern recognition
作者: Reczko, M Karras, DA Mertzios, V Graveron-Demilly, D van Ormondt, D Democritus Univ Thrace GR-67100 Xanthi Greece Univ Piraeus Dept Business Adm Athens 16342 Greece Univ Lyon 1 CPE CNRS UPRESA 5012 Lab RMN F-69365 Lyon France Delft Univ Technol Dept Appl Phys NL-2600 GA Delft Netherlands
This paper concerns a novel application of machine learning to Magnetic Resonance Imaging (MRI) by considering Neural Network models for the problem of image estimation from sparsely sampled k-space. Effective solutio... 详细信息
来源: 评论
Symbolic learning techniques in paper document processing  1st
Symbolic learning techniques in paper document processing
收藏 引用
1st international workshop on machine learning and data mining in pattern recognition, MLDM 1999
作者: Altamura, Oronzo Esposito, Floriana Lisi, Francesca A. Malerba, Donato Dipartimento di Informatica Università degli Studi di Bari via Orabona 4 Bari70126 Italy
WISDOM++ is an intelligent document processing system that transforms a paper document into HTML/XML format. The main design requirement is adaptivity, which is realized through the application of machine learning met... 详细信息
来源: 评论
Advances in predictive data mining methods  1st
Advances in predictive data mining methods
收藏 引用
1st international workshop on machine learning and data mining in pattern recognition, MLDM 1999
作者: Hong, Se June Weiss, Sholom M. IBM T.J. Watson Research Center P.O. Box 218 Yorktown HeightsNY10598 United States
Predictive models have been widely used long before the development of the new field that we call data mining. Expanding application demand for data mining of ever increasing data warehouses, and the need for understa... 详细信息
来源: 评论
Multi-valued and universal binary neurons: learning algorithms, application to image processing and recognition  1st
Multi-valued and universal binary neurons: Learning algorith...
收藏 引用
1st international workshop on machine learning and data mining in pattern recognition, MLDM 1999
作者: Aizenberg, Igor N. Aizenberg, Naum N. Krivosheev, Georgy A. Minaiskaya 28 kv. 49 Uzhgorod294015 Ukraine Paustovskogo 3 kv. 430 Moscow Russia
Multi-valued and universal binary neurons (MVN and UBN) are the neural processing elements with complex-valued weights and high functionality. It is possible to implement an arbitrary mapping described by partial-defi... 详细信息
来源: 评论