咨询与建议

限定检索结果

文献类型

  • 550 篇 会议
  • 28 篇 期刊文献
  • 7 册 图书

馆藏范围

  • 585 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 470 篇 工学
    • 425 篇 计算机科学与技术...
    • 199 篇 软件工程
    • 110 篇 电气工程
    • 67 篇 信息与通信工程
    • 45 篇 生物工程
    • 42 篇 生物医学工程(可授...
    • 26 篇 控制科学与工程
    • 20 篇 光学工程
    • 13 篇 仪器科学与技术
    • 11 篇 机械工程
    • 10 篇 化学工程与技术
    • 9 篇 交通运输工程
    • 8 篇 电子科学与技术(可...
    • 7 篇 土木工程
  • 140 篇 理学
    • 69 篇 数学
    • 56 篇 生物学
    • 33 篇 物理学
    • 24 篇 统计学(可授理学、...
    • 19 篇 系统科学
    • 8 篇 化学
  • 90 篇 管理学
    • 63 篇 图书情报与档案管...
    • 35 篇 管理科学与工程(可...
    • 19 篇 工商管理
  • 46 篇 医学
    • 36 篇 临床医学
    • 22 篇 基础医学(可授医学...
    • 13 篇 药学(可授医学、理...
    • 7 篇 特种医学
    • 6 篇 公共卫生与预防医...
  • 11 篇 法学
    • 9 篇 社会学
  • 11 篇 教育学
    • 10 篇 教育学
  • 8 篇 经济学
  • 6 篇 农学

主题

  • 74 篇 machine learning
  • 55 篇 data mining
  • 36 篇 pattern recognit...
  • 33 篇 deep learning
  • 20 篇 feature extracti...
  • 18 篇 artificial intel...
  • 16 篇 support vector m...
  • 15 篇 learning systems
  • 11 篇 image classifica...
  • 9 篇 training
  • 8 篇 neural networks
  • 8 篇 face recognition
  • 8 篇 manifold learnin...
  • 8 篇 supervised learn...
  • 7 篇 pattern classifi...
  • 7 篇 big data
  • 7 篇 clustering algor...
  • 7 篇 classification (...
  • 7 篇 machine learning...
  • 7 篇 data models

机构

  • 4 篇 ukrainian cathol...
  • 3 篇 harbin inst tech...
  • 3 篇 guilin univ elec...
  • 3 篇 fujian univ tech...
  • 3 篇 college of compu...
  • 3 篇 kunming univ col...
  • 3 篇 nanjing univ sci...
  • 3 篇 concordia univ d...
  • 2 篇 shanghai jiao to...
  • 2 篇 australian e-hea...
  • 2 篇 telangana hydera...
  • 2 篇 key lab data gov...
  • 2 篇 idiap ch-1920 ma...
  • 2 篇 department of ma...
  • 2 篇 univ toronto dep...
  • 2 篇 univ montreal di...
  • 2 篇 chitkara univers...
  • 2 篇 natl univ singap...
  • 2 篇 pattern analysis...
  • 2 篇 univ katolik ind...

作者

  • 3 篇 li junbao
  • 3 篇 maier andreas
  • 3 篇 bengio s
  • 3 篇 deepa r.
  • 3 篇 deng fei
  • 3 篇 pan jeng-shyang
  • 3 篇 hu cong
  • 3 篇 zhang daoqiang
  • 3 篇 amelio alessia
  • 3 篇 maier-hein klaus
  • 3 篇 he chunhui
  • 2 篇 vrahatis aristid...
  • 2 篇 jin zhong
  • 2 篇 collobert r
  • 2 篇 tax dmj
  • 2 篇 sharma r
  • 2 篇 cilia nicole dal...
  • 2 篇 fontanella franc...
  • 2 篇 genov r
  • 2 篇 stiefelhagen rai...

语言

  • 568 篇 英文
  • 12 篇 中文
  • 9 篇 其他
  • 1 篇 俄文
检索条件"任意字段=1st International Workshop on Machine Learning and Data Mining in Pattern Recognition"
585 条 记 录,以下是61-70 订阅
排序:
Using machine learning Techniques to Earlier Predict student's Performance  1
Using Machine Learning Techniques to Earlier Predict Student...
收藏 引用
1st international Conference of the Indonesian-Association-for-pattern-recognition (INAPR)
作者: Tanuar, Evawaty Heryadi, Yaya Lukas Abbas, Bahtiar Saleh Gaol, Ford Lumban Bina Nusantara Univ Sch Comp Sci Comp Sci Dept Jakarta 11480 Indonesia Bina Nusantara Univ BINUS Grad Program Comp Sci Jakarta 11480 Indonesia Bina Nusantara Univ Dept Comp Sci BINUS Grad Program Comp Sci Jakarta 11480 Indonesia Univ Katolik Indonesia Atma Jaya Fac Engn CERG Jakarta 12930 Indonesia
Education field is rich of data, and machine learning used in this field are increasing lately. Based on their first semester result, using machine learning techniques, the student's final year result (GPA) can be... 详细信息
来源: 评论
Advances in predictive data mining methods  1st
Advances in predictive data mining methods
收藏 引用
1st international workshop on machine learning and data mining in pattern recognition, MLDM 1999
作者: Hong, Se June Weiss, Sholom M. IBM T.J. Watson Research Center P.O. Box 218 Yorktown HeightsNY10598 United States
Predictive models have been widely used long before the development of the new field that we call data mining. Expanding application demand for data mining of ever increasing data warehouses, and the need for understa... 详细信息
来源: 评论
BiblioDAP'21: The 1st workshop on Bibliographic data Analysis and Processing  21
BiblioDAP'21: The 1st Workshop on Bibliographic Data Analysi...
收藏 引用
27th ACM SIGKDD international Conference on Knowledge Discovery and data mining (KDD)
作者: Boukhers, Zeyd Mayr, Philipp Peroni, Silvio Univ Koblenz Landau Inst Web Sci & Technol Koblenz Germany GESIS Leibniz Inst Social Sci Cologne Germany Univ Bologna Dept Class Philol & Italian Studies Res Ctr Open Scholarly Metadata Bologna Italy
Automatic processing of bibliographic data becomes very important in digital libraries, data science and machine learning due to its importance in keeping pace with the significant increase of published papers every y... 详细信息
来源: 评论
A fast SVM training algorithm
A fast SVM training algorithm
收藏 引用
1st international workshop on pattern recognition with Support Vector machines
作者: Dong, JX Suen, CY Concordia Univ Ctr Pattern Recognit & Machine Intelligent Montreal PQ H3G 1M8 Canada Concordia Univ Dept Comp Sci Montreal PQ H3G 1M8 Canada
A fast support vector machine (SVM) training algorithm is proposed under SVM's decomposition framework by effectively integrating kernel caching, digest and shrinking policies and stopping conditions. Kernel cachi... 详细信息
来源: 评论
Application of PrefixSpan* Algorithm in Malware Detection Expert System
Application of PrefixSpan* Algorithm in Malware Detection Ex...
收藏 引用
1st international workshop on Education Technology and Computer Science
作者: Wang, Lina Tan, Xiaobin Pan, Jianfeng Xi, Hongsheng Univ Sci & Technol China Dept Automat Hefei 230026 Peoples R China
Malware detection is an important application of data mining. Most of the previously developed sequential pattern mining methods are Apriori-like, which still encounters problems when a sequence database is large and/... 详细信息
来源: 评论
Silicon support vector machine with on-line learning
收藏 引用
international JOURNAL OF pattern recognition AND ARTIFICIAL INTELLIGENCE 2003年 第3期17卷 385-404页
作者: Genov, R Chakrabartty, S Cauwenberghs, G Univ Toronto Dept Elect & Comp Engn Toronto ON M5S 3G4 Canada Johns Hopkins Univ Dept Elect & Comp Engn Baltimore MD 21218 USA
Training of support vector machines (SVMs) amounts to solving a quadratic programming problem over the training data. We present a simple on-line SVM training algorithm of complexity approximately linear in the number... 详细信息
来源: 评论
Histogram-Based Fisher Information Embedding for Manifolds Clustering and Visualization
Histogram-Based Fisher Information Embedding for Manifolds C...
收藏 引用
Chinese Conference on pattern recognition/1st CJK Joint workshop on pattern recognition
作者: Zou, Jian Liu, ChuanCai Zhang, Yue Nanjing Univ Sci & Technol Dept Comp Sci & Technol Nanjing 210094 Peoples R China
In this paper, a nonparametric histogram-based fisher information embedding method is presented for clustering and visualizing data sets with non-Euclidean geometric structures. It is on the assumption that each data ... 详细信息
来源: 评论
Decision Support System (DSS) - Form, Development and Future
Decision Support System (DSS) - Form, Development and Future
收藏 引用
1st international workshop on Education Technology and Computer Science
作者: Fang, Bin Tianjin Univ Sch Management Tianjin 300072 Peoples R China
The Decision Support System (DSS) applies various data and models to Human-machine Interface (HMI) to assist decision-makers at each level in achieving scientific decisions. The DSS was originated in 1970s, but has se... 详细信息
来源: 评论
Symbolic learning techniques in paper document processing  1st
Symbolic learning techniques in paper document processing
收藏 引用
1st international workshop on machine learning and data mining in pattern recognition, MLDM 1999
作者: Altamura, Oronzo Esposito, Floriana Lisi, Francesca A. Malerba, Donato Dipartimento di Informatica Università degli Studi di Bari via Orabona 4 Bari70126 Italy
WISDOM++ is an intelligent document processing system that transforms a paper document into HTML/XML format. The main design requirement is adaptivity, which is realized through the application of machine learning met... 详细信息
来源: 评论
Prediction of asynchronous dimensional emotion ratings from audiovisual and physiological data
收藏 引用
pattern recognition LETTERS 2015年 第Nov.15期66卷 22-30页
作者: Ringeval, Fabien Eyben, Florian Kroupi, Eleni Yuce, Anil Thiran, Jean-Philippe Ebrahimi, Touradj Lalanne, Denis Schueller, Bjoern Tech Univ Munich Machine Intelligence & Signal Proc Grp MMK D-80333 Munich Germany Ecole Polytech Fed Lausanne Multimedia Signal Proc Grp CH-1015 Lausanne Switzerland Ecole Polytech Fed Lausanne Signal Proc Lab LTS5 CH-1015 Lausanne Switzerland Univ Fribourg Document Image & Voice Anal CH-1700 Fribourg Switzerland Univ London Imperial Coll Sci Technol & Med Dept Comp Machine Learning Grp London SW7 2AZ England Univ Passau Chair Complex Syst Engn D-94032 Passau Germany
Automatic emotion recognition systems based on supervised machine learning require reliable annotation of affective behaviours to build useful models. Whereas the dimensional approach is getting more and more popular ... 详细信息
来源: 评论