咨询与建议

限定检索结果

文献类型

  • 6,639 篇 会议
  • 34 篇 期刊文献
  • 5 册 图书

馆藏范围

  • 6,677 篇 电子文献
  • 1 种 纸本馆藏

日期分布

学科分类号

  • 3,950 篇 工学
    • 3,725 篇 计算机科学与技术...
    • 1,476 篇 软件工程
    • 807 篇 光学工程
    • 323 篇 信息与通信工程
    • 240 篇 控制科学与工程
    • 206 篇 机械工程
    • 169 篇 电气工程
    • 85 篇 生物医学工程(可授...
    • 73 篇 电子科学与技术(可...
    • 70 篇 生物工程
    • 65 篇 仪器科学与技术
    • 38 篇 建筑学
    • 36 篇 土木工程
    • 34 篇 力学(可授工学、理...
    • 32 篇 航空宇航科学与技...
    • 29 篇 安全科学与工程
    • 23 篇 化学工程与技术
    • 21 篇 材料科学与工程(可...
  • 1,498 篇 理学
    • 969 篇 物理学
    • 929 篇 数学
    • 369 篇 统计学(可授理学、...
    • 136 篇 生物学
    • 40 篇 系统科学
    • 26 篇 化学
  • 210 篇 医学
    • 210 篇 临床医学
    • 23 篇 基础医学(可授医学...
  • 165 篇 管理学
    • 123 篇 图书情报与档案管...
    • 44 篇 管理科学与工程(可...
    • 29 篇 工商管理
  • 21 篇 法学
    • 21 篇 社会学
  • 10 篇 农学
  • 9 篇 教育学
  • 6 篇 经济学
  • 2 篇 军事学
  • 1 篇 艺术学

主题

  • 2,364 篇 computer vision
  • 847 篇 pattern recognit...
  • 663 篇 cameras
  • 634 篇 computer science
  • 592 篇 face recognition
  • 555 篇 layout
  • 541 篇 conferences
  • 527 篇 image segmentati...
  • 519 篇 shape
  • 463 篇 object recogniti...
  • 447 篇 robustness
  • 393 篇 humans
  • 340 篇 feature extracti...
  • 320 篇 training
  • 305 篇 object detection
  • 261 篇 image recognitio...
  • 260 篇 application soft...
  • 249 篇 lighting
  • 246 篇 computational mo...
  • 237 篇 image reconstruc...

机构

  • 44 篇 microsoft resear...
  • 27 篇 department of co...
  • 21 篇 swiss fed inst t...
  • 21 篇 school of comput...
  • 21 篇 carnegie mellon ...
  • 20 篇 department of co...
  • 19 篇 swiss fed inst t...
  • 18 篇 department of co...
  • 17 篇 department of in...
  • 17 篇 the robotics ins...
  • 17 篇 institute of com...
  • 16 篇 univ sci & techn...
  • 16 篇 robotics institu...
  • 15 篇 tsinghua univ pe...
  • 14 篇 department of el...
  • 14 篇 center for autom...
  • 14 篇 school of comput...
  • 14 篇 school of comput...
  • 14 篇 computer science...
  • 13 篇 univ maryland co...

作者

  • 39 篇 timofte radu
  • 29 篇 s.k. nayar
  • 25 篇 huang thomas s.
  • 24 篇 xiaoou tang
  • 22 篇 t. kanade
  • 20 篇 t. darrell
  • 19 篇 van gool luc
  • 19 篇 nayar shree k.
  • 19 篇 chellappa rama
  • 18 篇 t.s. huang
  • 17 篇 a.k. jain
  • 17 篇 a. zisserman
  • 17 篇 heung-yeung shum
  • 17 篇 zisserman andrew
  • 16 篇 g. healey
  • 16 篇 torralba antonio
  • 16 篇 jain anil k.
  • 16 篇 r. szeliski
  • 15 篇 ying wu
  • 15 篇 m. shah

语言

  • 6,661 篇 英文
  • 9 篇 其他
  • 8 篇 中文
检索条件"任意字段=2003 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, CVPR 2003"
6678 条 记 录,以下是1031-1040 订阅
排序:
Vln↻bert: A Recurrent vision-and-Language BERT for Navigation
Vln&#8635bert: A Recurrent Vision-and-Language BERT for Navi...
收藏 引用
2021 ieee/CVF conference on computer vision and pattern recognition, cvpr 2021
作者: Hong, Yicong Wu, Qi Qi, Yuankai Rodriguez-Opazo, Cristian Gould, Stephen The Australian National University Australian Centre for Robotic Vision Australia The University of Adelaide Australian Centre for Robotic Vision Australia
Accuracy of many visiolinguistic tasks has benefited significantly from the application of vision-and-language (V&L) BERT. However, its application for the task of vision- and-language navigation (VLN) remains lim... 详细信息
来源: 评论
Phase error analysis and compensation for motion in high-speed phase measurement profilometry
收藏 引用
OSA CONTINUUM 2021年 第4期4卷 1191-1206页
作者: Li, Xuexing Zhang, Wenhui Wuxi Inst Technol Sch Mech Technol Wuxi 214121 Jiangsu Peoples R China Wuxi GNFIR Informat Technol Co Ltd Wuxi 214000 Jiangsu Peoples R China
High-speed three-dimensional (3D) measurement is increasingly important in many fields. Phase measurement profilometry (PMP) based on the binary defocusing technique has been applied to the high-speed 3D measurement s... 详细信息
来源: 评论
Neurodata Lab's approach to the Challenge on computer vision for Physiological Measurement
Neurodata Lab's approach to the Challenge on Computer Vision...
收藏 引用
ieee/CVF conference on computer vision and pattern recognition (cvpr)
作者: Artemyev, Mikhail Churikova, Marina Grinenko, Mikhail Perepelkina, Olga Neurodata Lab LLC Miami FL 33137 USA Lomonosov Moscow State Univ Fac Biol Dept Higher Nervous Act Moscow Russia
This paper introduces the Neurodata Lab's approach presented at the 1st Challenge on Remote Physiological Signal Sensing (RePSS) organized within cvpr2020. The RePSS challenge was focused on measuring the average ... 详细信息
来源: 评论
Second Edition FRCSyn Challenge at cvpr 2024: Face recognition Challenge in the Era of Synthetic Data
Second Edition FRCSyn Challenge at CVPR 2024: Face Recogniti...
收藏 引用
ieee computer society conference on computer vision and pattern recognition Workshops (cvprW)
作者: Ivan DeAndres-Tame Ruben Tolosana Pietro Melzi Ruben Vera-Rodriguez Minchul Kim Christian Rathgeb Xiaoming Liu Aythami Morales Julian Fierrez Javier Ortega-Garcia Zhizhou Zhong Yuge Huang Yuxi Mi Shouhong Ding Shuigeng Zhou Shuai He Lingzhi Fu Heng Cong Rongyu Zhang Zhihong Xiao Evgeny Smirnov Anton Pimenov Aleksei Grigorev Denis Timoshenko Kaleb Mesfin Asfaw Cheng Yaw Low Hao Liu Chuyi Wang Qing Zuo Zhixiang He Hatef Otroshi Shahreza Anjith George Alexander Unnervik Parsa Rahimi Sébastien Marcel Pedro C. Neto Marco Huber Jan Niklas Kolf Naser Damer Fadi Boutros Jaime S. Cardoso Ana F. Sequeira Andrea Atzori Gianni Fenu Mirko Marras Vitomir Štruc Jiang Yu Zhangjie Li Jichun Li Weisong Zhao Zhen Lei Xiangyu Zhu Xiao-Yu Zhang Bernardo Biesseck Pedro Vidal Luiz Coelho Roger Granada David Menotti Universidad Autonoma de Madrid Spain Michigan State University USA Hochschule Darmstadt Germany Fudan University China Tencent Youtu Lab China Interactive Entertainment Group of Netease Inc China ID R&D Inc. USA Korea Advanced Institute of Science & Technology Korea Institute for Basic Science Korea China Telecom AI China Idiap Research Institute Switzerland EPFL Switzerland Université de Lausanne Switzerland INESC TEC Portugal Universidade do Porto Portugal Fraunhofer IGD Germany University of Cagliari Italy University of Ljubljana Slovenia Samsung Electronics (China) R&D Centre China University of Science and Technology China IIE CAS China MAIS CASIA China Federal University of Paraná Brazil Federal Institute of Mato Grosso Brazil unico - idTech Brazil
Synthetic data is gaining increasing relevance for training machine learning models. This is mainly motivated due to several factors such as the lack of real data and intra-class variability, time and errors produced ... 详细信息
来源: 评论
Understanding action recognition in still images
Understanding action recognition in still images
收藏 引用
ieee/CVF conference on computer vision and pattern recognition (cvpr)
作者: Girish, Deeptha Singh, Vineeta Ralescu, Anca Univ Cincinnati Cincinnati OH 45220 USA
Action recognition in still images is closely related to various other computer vision tasks such as pose estimation, object recognition, image retrieval, video action recognition and frame tagging in videos. This pro... 详细信息
来源: 评论
NTIRE 2021 NonHomogeneous Dehazing Challenge Report
NTIRE 2021 NonHomogeneous Dehazing Challenge Report
收藏 引用
ieee/CVF conference on computer vision and pattern recognition (cvpr)
作者: Ancuti, Codruta O. Ancuti, Cosmin Vasluianu, Florin-Alexandru Timofte, Radu Fu, Minghan Liu, Huan Yu, Yankun Chen, Jun Wang, Keyan Chang, Jerome Wang, Xiyao Liu, Jing Xu, Yi Zhang, Xinjian Zhao, Minyi Zhou, Shuigeng Chen, Tianyi Fu, Jiahui Jiang, Wentao Gao, Chen Liu, Si Wang, Yudong Guo, Jichang Li, Chongyi Yan, Qixin Zheng, Sida Zamir, Syed Waqas Arora, Aditya Dudhane, Akshay Khan, Salman Hayat, Munawar Khan, Fahad Shahbaz Shao, Ling Zhang, Haichuan Guo, Tiantong Monga, Vishal Yang, Wenjin Lin, Jin Luo, Xiaotong Huang, Guowen Chen, Shuxin Qu, Yanyun Xu, Kele Yang, Lehan Sun, Pengliang Niu, Xuetong Zheng, Junjun Ruan, Xiaotong Wang, Yunfeng Yang, Jiang Luo, Zhipeng Wang, Sai Xu, Zhenyu Cao, Xiaochun Luo, Jun Zheng, Zhuoran Ren, Wenqi Wang, Tao Chen, Yiqun Leng, Cong Li, Chenghua Cheng, Jian Sung, Chang-Sung Chen, Jun-Cheng Jo, Eunsung Sim, Jae-Young Geethu, M. M. Akhil, K. A. Sreeni, K. G. Jeena, R. S. Zacharias, Joseph Manu, Chippy M. Huang, Zexi Zhang, Baofeng Zhang, Yiwen Li, Jindong Chen, Mianjie Xiao, Quan Su, Qingchao Han, Lihua Huang, Yanting Prajapati, Kalpesh Chudasama, Vishal Patel, Heena Sarvaiya, Anjali Upla, Kishor Raja, Kiran Ramachandra, Raghavendra Busch, Christoph Jing, Hongyuan Huang, Zilong Fu, Yiran Wu, Haoqiang Zha, Quanxing Zhu, Zhiwei Lv, Hejun Univ Politehn Timisoara ETcTI Timisoara Romania UCL ICTEAM Louvain Belgium Swiss Fed Inst Technol Comp Vis Lab Zurich Switzerland McMaster Univ Hamilton ON Canada Xidian Univ Xian Peoples R China Natl Taiwan Univ Taipei Taiwan Univ Chinese Acad Sci Inst Automat Ctr Res Intelligent Syst & Engn Beijing Peoples R China Bilibili Inc Shanghai Peoples R China Fudan Univ Shanghai Peoples R China Beihang Univ Beijing Peoples R China Tianjin Univ Sch Elect & Informat Engn Tianjin 300072 Peoples R China Nanyang Technol Univ NTU Sch Comp Sci & Engn Singapore Singapore Incept Inst Artificial Intelligence IIAI Abu Dhabi U Arab Emirates Penn State Univ Sch Elect Engn & Comp Sci Informat Proc & Algorithms Lab iPAL University Pk PA 16802 USA Xiamen Univ Dept Comp Sci Xiamen Peoples R China Key Lab Parallel & Distributed Proc Changsha Peoples R China Alibaba Inc Shanghai Peoples R China DeepBlue Technol Shanghai Co Ltd Shanghai Peoples R China Chinese Acad Sci Inst Informat Engn State Key Lab Informat Secur Beijing Peoples R China CASIA Beijing Peoples R China CASIA AiRiA Beijing Peoples R China Natl Taiwan Univ Data Sci Degree Program Taipei Taiwan Ulsan Natl Inst Sci & Technol Ulsan South Korea Coll Engn Dept ECE CV Lab Trivandrum Kerala India AICTE Univ Kollam Kerala India South China Univ Techonol Sch Elect & Informat Engn Guangzhou Peoples R China Shenzhen Wave Kingdom Co Ltd Shenzhen Peoples R China Sardar Vallabhbhai Natl Inst Technol Surat India Beijing Union Univ Coll Robot Beijing Peoples R China
This work reviews the results of the NTIRE 2021 Challenge on Non-Homogeneous Dehazing. The proposed techniques and their results have been evaluated on a novel dataset that extends the NH-Haze datset. It consists of a... 详细信息
来源: 评论
Generalized Focal Loss V2: Learning Reliable Localization Quality Estimation for Dense Object Detection
Generalized Focal Loss V2: Learning Reliable Localization Qu...
收藏 引用
2021 ieee/CVF conference on computer vision and pattern recognition, cvpr 2021
作者: Li, Xiang Wang, Wenhai Hu, Xiaolin Li, Jun Tang, Jinhui Yang, Jian Nanjing University of Science and Technology Momenta Nanjing University Tsinghua University
Localization Quality Estimation (LQE) is crucial and popular in the recent advancement of dense object detectors since it can provide accurate ranking scores that benefit the Non-Maximum Suppression processing and imp... 详细信息
来源: 评论
Diagnosing Rarity in Human-object Interaction Detection
Diagnosing Rarity in Human-object Interaction Detection
收藏 引用
ieee/CVF conference on computer vision and pattern recognition (cvpr)
作者: Kilickaya, Mert Smeulders, Arnold QUvA Deep Vis Lab Amsterdam Netherlands
Human-object interaction (HOI) detection is a core task in computer vision. The goal is to localize all human-object pairs and recognize their interactions. An interaction defined by a tuple leads to a long-tailed vi... 详细信息
来源: 评论
Intelligent Scene Caching to Improve Accuracy for Energy-Constrained Embedded vision
Intelligent Scene Caching to Improve Accuracy for Energy-Con...
收藏 引用
ieee/CVF conference on computer vision and pattern recognition (cvpr)
作者: Simpson, Benjamin Lubana, Ekdeep Liu, Yuchen Dick, Robert Univ Michigan Ann Arbor MI 48109 USA
We describe an efficient method of improving the performance of vision algorithms operating on video streams by reducing the amount of data captured and transferred from image sensors to analysis servers in a data-awa... 详细信息
来源: 评论
As Seen on TV: Automatic Basketball Video Production using Gaussian-based Actionness and Game States recognition
As Seen on TV: Automatic Basketball Video Production using G...
收藏 引用
ieee/CVF conference on computer vision and pattern recognition (cvpr)
作者: Quiroga, Julian Carrillo, Henry Maldonado, Edisson Ruiz, John Zapata, Luis M. Genius Sports Comp Vis Medellin Colombia
Automatic video production of sports aims at producing an aesthetic broadcast of sporting events. We present a new video system able to automatically produce a smooth and pleasant broadcast of Basketball games using a... 详细信息
来源: 评论