咨询与建议

限定检索结果

文献类型

  • 6,639 篇 会议
  • 34 篇 期刊文献
  • 5 册 图书

馆藏范围

  • 6,677 篇 电子文献
  • 1 种 纸本馆藏

日期分布

学科分类号

  • 3,950 篇 工学
    • 3,725 篇 计算机科学与技术...
    • 1,476 篇 软件工程
    • 807 篇 光学工程
    • 323 篇 信息与通信工程
    • 240 篇 控制科学与工程
    • 206 篇 机械工程
    • 169 篇 电气工程
    • 85 篇 生物医学工程(可授...
    • 73 篇 电子科学与技术(可...
    • 70 篇 生物工程
    • 65 篇 仪器科学与技术
    • 38 篇 建筑学
    • 36 篇 土木工程
    • 34 篇 力学(可授工学、理...
    • 32 篇 航空宇航科学与技...
    • 29 篇 安全科学与工程
    • 23 篇 化学工程与技术
    • 21 篇 材料科学与工程(可...
  • 1,498 篇 理学
    • 969 篇 物理学
    • 929 篇 数学
    • 369 篇 统计学(可授理学、...
    • 136 篇 生物学
    • 40 篇 系统科学
    • 26 篇 化学
  • 210 篇 医学
    • 210 篇 临床医学
    • 23 篇 基础医学(可授医学...
  • 165 篇 管理学
    • 123 篇 图书情报与档案管...
    • 44 篇 管理科学与工程(可...
    • 29 篇 工商管理
  • 21 篇 法学
    • 21 篇 社会学
  • 10 篇 农学
  • 9 篇 教育学
  • 6 篇 经济学
  • 2 篇 军事学
  • 1 篇 艺术学

主题

  • 2,364 篇 computer vision
  • 847 篇 pattern recognit...
  • 663 篇 cameras
  • 634 篇 computer science
  • 592 篇 face recognition
  • 555 篇 layout
  • 541 篇 conferences
  • 527 篇 image segmentati...
  • 519 篇 shape
  • 463 篇 object recogniti...
  • 447 篇 robustness
  • 393 篇 humans
  • 340 篇 feature extracti...
  • 320 篇 training
  • 305 篇 object detection
  • 261 篇 image recognitio...
  • 260 篇 application soft...
  • 249 篇 lighting
  • 246 篇 computational mo...
  • 237 篇 image reconstruc...

机构

  • 44 篇 microsoft resear...
  • 27 篇 department of co...
  • 21 篇 swiss fed inst t...
  • 21 篇 school of comput...
  • 21 篇 carnegie mellon ...
  • 20 篇 department of co...
  • 19 篇 swiss fed inst t...
  • 18 篇 department of co...
  • 17 篇 department of in...
  • 17 篇 the robotics ins...
  • 17 篇 institute of com...
  • 16 篇 univ sci & techn...
  • 16 篇 robotics institu...
  • 15 篇 tsinghua univ pe...
  • 14 篇 department of el...
  • 14 篇 center for autom...
  • 14 篇 school of comput...
  • 14 篇 school of comput...
  • 14 篇 computer science...
  • 13 篇 univ maryland co...

作者

  • 39 篇 timofte radu
  • 29 篇 s.k. nayar
  • 25 篇 huang thomas s.
  • 24 篇 xiaoou tang
  • 22 篇 t. kanade
  • 20 篇 t. darrell
  • 19 篇 van gool luc
  • 19 篇 nayar shree k.
  • 19 篇 chellappa rama
  • 18 篇 t.s. huang
  • 17 篇 a.k. jain
  • 17 篇 a. zisserman
  • 17 篇 heung-yeung shum
  • 17 篇 zisserman andrew
  • 16 篇 g. healey
  • 16 篇 torralba antonio
  • 16 篇 jain anil k.
  • 16 篇 r. szeliski
  • 15 篇 ying wu
  • 15 篇 m. shah

语言

  • 6,661 篇 英文
  • 9 篇 其他
  • 8 篇 中文
检索条件"任意字段=2003 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, CVPR 2003"
6678 条 记 录,以下是1101-1110 订阅
排序:
An Analytical Framework for Trusted Machine Learning and computer vision Running with Blockchain
An Analytical Framework for Trusted Machine Learning and Com...
收藏 引用
ieee/CVF conference on computer vision and pattern recognition (cvpr)
作者: Wang, Tao Du, Maggie Wu, Xinmin He, Taiping SAS Inst Inc Cary NC 27513 USA
Machine learning algorithms often use data from databases that are mutable;therefore, the data and the results of machine learning cannot be fully trusted. Also, the learning process is often difficult to automate. A ... 详细信息
来源: 评论
Foreword to the Special Issue on computer vision-Based Approaches for Earth Observation
收藏 引用
ieee JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING 2020年 13卷 6515-6518页
作者: Tuia, Devis Hansch, Ronny Yokoya, Naoto Brown, Myron Le Saux, Bertrand EPFL Valais CH-1950 Sion Switzerland German Aerosp Ctr D-82234 Wessling Germany Univ Tokyo Tokyo 1138654 Japan RIKEN Ctr Adv Intelligence Project Tokyo 1030027 Japan Johns Hopkins Univ Appl Phys Lab Laurel MD 11100 USA European Space Res Inst & Lab European Space Agcy I-00044 Frascati Italy
The five papers in this special section focus on computer vision-based approaches for Earth observation. These papers followed a series of events promoting works at the interface between computer vision and remote sen... 详细信息
来源: 评论
Densely Self-guided Wavelet Network for Image Denoising
Densely Self-guided Wavelet Network for Image Denoising
收藏 引用
ieee/CVF conference on computer vision and pattern recognition (cvpr)
作者: Liu, Wei Yan, Qiong Zhao, Yuzhi SenseTime Res Hong Kong Peoples R China Harbin Inst Technol Harbin Heilongjiang Peoples R China City Univ Hong Kong Hong Kong Peoples R China
During the past years, deep convolutional neural networks have achieved impressive success in image denoising. In this paper, we propose a densely self-guided wavelet network (DSWN) for real-world image denoising. The... 详细信息
来源: 评论
Bilinear Parameterization For Differentiable Rank-Regularization
Bilinear Parameterization For Differentiable Rank-Regulariza...
收藏 引用
ieee/CVF conference on computer vision and pattern recognition (cvpr)
作者: Ornhag, Marcus Valtonen Olsson, Carl Heyden, Anders Lund Univ Ctr Math Sci Lund Sweden Chalmers Univ Technol Dept Elect Engn Gothenburg Sweden
Low rank approximation is a commonly occurring problem in many computer vision and machine learning applications. There are two common ways of optimizing the resulting models. Either the set of matrices with a given r... 详细信息
来源: 评论
DNDNet: Reconfiguring CNN for Adversarial Robustness
DNDNet: Reconfiguring CNN for Adversarial Robustness
收藏 引用
ieee/CVF conference on computer vision and pattern recognition (cvpr)
作者: Goel, Akhil Agarwal, Akshay Vatsa, Mayank Singh, Richa Ratha, Nalini K. IIIT Delhi Delhi India IIT Jodhpur Jodhpur Rajasthan India IBM TJ Watson Res Ctr Yorktown Hts NY USA
Several successful adversarial attacks have demonstrated the vulnerabilities of deep learning algorithms. These attacks are detrimental in building deep learning based dependable AI applications. Therefore, it is impe... 详细信息
来源: 评论
Discriminant Distribution-Agnostic Loss for Facial Expression recognition in the Wild
Discriminant Distribution-Agnostic Loss for Facial Expressio...
收藏 引用
ieee/CVF conference on computer vision and pattern recognition (cvpr)
作者: Farzaneh, Amir Hossein Qi, Xiaojun Utah State Univ Dept Comp Sci Logan UT 84322 USA
Facial Expression recognition (FER) has demonstrated remarkable progress due to the advancement of deep Convolutional Neural Networks (CNNs). FER's goal as a visual recognition problem is to learn a mapping from t... 详细信息
来源: 评论
An Interface between Grassmann manifolds and vector spaces
An Interface between Grassmann manifolds and vector spaces
收藏 引用
ieee/CVF conference on computer vision and pattern recognition (cvpr)
作者: Souza, Lincon S. Sogi, Naoya Gatto, Bernardo B. Kobayashi, Takumi Fukui, Kazuhiro Univ Tsukuba Grad Sch Sci & Technol Tsukuba Ibaraki Japan Univ Tsukuba Ctr Artificial Intelligence Res C AIR Tsukuba Ibaraki Japan Natl Inst Adv Ind Sci & Technol Tsukuba Ibaraki Japan
In this paper, we propose a method to map data from a Grassmann manifold to a vector space while maximizing discrimination capability for classification. Subspaces are a practical and robust representation for image s... 详细信息
来源: 评论
Proceedings - 2020 ieee/CVF conference on computer vision and pattern recognition, cvpr 2020
Proceedings - 2020 IEEE/CVF Conference on Computer Vision an...
收藏 引用
2020 ieee/CVF conference on computer vision and pattern recognition, cvpr 2020
The proceedings contain 2 papers. The topics discussed include: attention mechanism exploits temporal contexts: real-time 3D human pose reconstruction;and cascaded deep monocular 3D human pose estimation with evolutio...
来源: 评论
Fine grained pointing recognition for natural drone guidance
Fine grained pointing recognition for natural drone guidance
收藏 引用
ieee/CVF conference on computer vision and pattern recognition (cvpr)
作者: Barbed, O. L. Azagra, P. Teixeira, L. Chli, M. Civera, J. Murillo, A. C. Univ Zaragoza DIIS I3A Zaragoza Spain Swiss Fed Inst Technol Vis Robot Lab Zurich Switzerland
Human action recognition systems are typically focused on identifying different actions, rather than fine grained variations of the same action. This work explores strategies to identify different pointing directions ... 详细信息
来源: 评论
AdaMT-Net: An Adaptive Weight Learning Based Multi-Task Learning Model For Scene Understanding
AdaMT-Net: An Adaptive Weight Learning Based Multi-Task Lear...
收藏 引用
ieee/CVF conference on computer vision and pattern recognition (cvpr)
作者: Jha, Ankit Kumar, Awanish Banerjee, Biplab Chaudhuri, Subhasis Indian Inst Technol Dept Elect Engn Mumbai Maharashtra India Indian Inst Technol Ctr Studies Resources Engn Mumbai Maharashtra India
We tackle the problem of deep end-to-end multi-task learning (MTL) for visual scene understanding from monocular images in this paper. It is proven that learning several related tasks together helps in attaining impro... 详细信息
来源: 评论