咨询与建议

限定检索结果

文献类型

  • 6,639 篇 会议
  • 34 篇 期刊文献
  • 5 册 图书

馆藏范围

  • 6,677 篇 电子文献
  • 1 种 纸本馆藏

日期分布

学科分类号

  • 3,950 篇 工学
    • 3,725 篇 计算机科学与技术...
    • 1,476 篇 软件工程
    • 807 篇 光学工程
    • 323 篇 信息与通信工程
    • 240 篇 控制科学与工程
    • 206 篇 机械工程
    • 169 篇 电气工程
    • 85 篇 生物医学工程(可授...
    • 73 篇 电子科学与技术(可...
    • 70 篇 生物工程
    • 65 篇 仪器科学与技术
    • 38 篇 建筑学
    • 36 篇 土木工程
    • 34 篇 力学(可授工学、理...
    • 32 篇 航空宇航科学与技...
    • 29 篇 安全科学与工程
    • 23 篇 化学工程与技术
    • 21 篇 材料科学与工程(可...
  • 1,498 篇 理学
    • 969 篇 物理学
    • 929 篇 数学
    • 369 篇 统计学(可授理学、...
    • 136 篇 生物学
    • 40 篇 系统科学
    • 26 篇 化学
  • 210 篇 医学
    • 210 篇 临床医学
    • 23 篇 基础医学(可授医学...
  • 165 篇 管理学
    • 123 篇 图书情报与档案管...
    • 44 篇 管理科学与工程(可...
    • 29 篇 工商管理
  • 21 篇 法学
    • 21 篇 社会学
  • 10 篇 农学
  • 9 篇 教育学
  • 6 篇 经济学
  • 2 篇 军事学
  • 1 篇 艺术学

主题

  • 2,364 篇 computer vision
  • 847 篇 pattern recognit...
  • 663 篇 cameras
  • 634 篇 computer science
  • 592 篇 face recognition
  • 555 篇 layout
  • 541 篇 conferences
  • 527 篇 image segmentati...
  • 519 篇 shape
  • 463 篇 object recogniti...
  • 447 篇 robustness
  • 393 篇 humans
  • 340 篇 feature extracti...
  • 320 篇 training
  • 305 篇 object detection
  • 261 篇 image recognitio...
  • 260 篇 application soft...
  • 249 篇 lighting
  • 246 篇 computational mo...
  • 237 篇 image reconstruc...

机构

  • 44 篇 microsoft resear...
  • 27 篇 department of co...
  • 21 篇 swiss fed inst t...
  • 21 篇 school of comput...
  • 21 篇 carnegie mellon ...
  • 20 篇 department of co...
  • 19 篇 swiss fed inst t...
  • 18 篇 department of co...
  • 17 篇 department of in...
  • 17 篇 the robotics ins...
  • 17 篇 institute of com...
  • 16 篇 univ sci & techn...
  • 16 篇 robotics institu...
  • 15 篇 tsinghua univ pe...
  • 14 篇 department of el...
  • 14 篇 center for autom...
  • 14 篇 school of comput...
  • 14 篇 school of comput...
  • 14 篇 computer science...
  • 13 篇 univ maryland co...

作者

  • 39 篇 timofte radu
  • 29 篇 s.k. nayar
  • 25 篇 huang thomas s.
  • 24 篇 xiaoou tang
  • 22 篇 t. kanade
  • 20 篇 t. darrell
  • 19 篇 van gool luc
  • 19 篇 nayar shree k.
  • 19 篇 chellappa rama
  • 18 篇 t.s. huang
  • 17 篇 a.k. jain
  • 17 篇 a. zisserman
  • 17 篇 heung-yeung shum
  • 17 篇 zisserman andrew
  • 16 篇 g. healey
  • 16 篇 torralba antonio
  • 16 篇 jain anil k.
  • 16 篇 r. szeliski
  • 15 篇 ying wu
  • 15 篇 m. shah

语言

  • 6,661 篇 英文
  • 9 篇 其他
  • 8 篇 中文
检索条件"任意字段=2003 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, CVPR 2003"
6678 条 记 录,以下是1131-1140 订阅
排序:
Trident Dehazing Network
Trident Dehazing Network
收藏 引用
ieee/CVF conference on computer vision and pattern recognition (cvpr)
作者: Liu, Jing Wu, Haiyan Xie, Yuan Qu, Yanyun Ma, Lizhuang East China Normal Univ Sch Comp Sci & Technol Shanghai Peoples R China Xiamen Univ Sch Informat Sci & Engn Xiamen Fujian Peoples R China
Most existing dehazing methods are not robust to nonhomogeneous haze. Meanwhile, the information of dense haze region is usually unknown and hard to estimate, leading to blurry in dehaze result for those regions. Focu... 详细信息
来源: 评论
Dynamic Inference: A New Approach Toward Efficient Video Action recognition
Dynamic Inference: A New Approach Toward Efficient Video Act...
收藏 引用
ieee/CVF conference on computer vision and pattern recognition (cvpr)
作者: Wu, Wenhao He, Dongliang Tan, Xiao Chen, Shifeng Yang, Yi Wen, Shilei Chinese Acad Sci Shenzhen Inst Adv Technol MMLab Beijing Peoples R China Baidu Inc Dept Comp Vis Technol Vis Beijing Peoples R China Univ Chinese Acad Sci Beijing Peoples R China Univ Technol Sydney Sydney NSW Australia Baidu Beijing Peoples R China
Though action recognition in videos has achieved great success recently, it remains a challenging task due to the massive computational cost. Designing lightweight networks is a possible solution, but it may degrade t... 详细信息
来源: 评论
Learning Sparse Neural Networks Through Mixture-Distributed Regularization
Learning Sparse Neural Networks Through Mixture-Distributed ...
收藏 引用
ieee/CVF conference on computer vision and pattern recognition (cvpr)
作者: Huang, Chang-Ti Chen, Jun-Cheng Wu, Ja-Ling Natl Taiwan Univ Taipei Taiwan Acad Sinica Taipei Taiwan
L-0-norm regularization is one of the most efficient approaches to learn a sparse neural network. Due to its discrete nature, differentiable and approximate regularizations based on the concrete distribution [31] or i... 详细信息
来源: 评论
Thermal Image Super-Resolution Challenge - PBVS 2020
Thermal Image Super-Resolution Challenge - PBVS 2020
收藏 引用
ieee/CVF conference on computer vision and pattern recognition (cvpr)
作者: Rivadeneira, Rafael E. Sappa, Angel D. Vintimilla, Boris X. Guo, Lin Hou, Jiankun Mehri, Armin Behjati Ardakani, Parichehr Patel, Heena Chudasama, Vishal Prajapati, Kalpesh Upla, Kishor P. Ramachandra, Raghavendra Raja, Kiran Busch, Christoph Almasri, Feras Debeir, Olivier Nathan, Sabari Kansal, Priya Gutierrez, Nolan Mojra, Bardia Beksi, William J. ESPOL Escuela Super Politecn Litoral CIDIS Fac Ingn Elect & Comp 30-5 Via PerimetralPOB 09-01-5863 Guayaquil Ecuador Comp Vis Ctr Campus UAB Barcelona 08193 Spain Oklahoma State Univ Stillwater OK 74078 USA SVNIT Surat India NTNU Gjovik Norway Univ Libre Bruxelles Brussels Belgium Couger Inc Tokyo Japan Univ Texas Arlington Dept Comp Sci & Engn Robot Vis Lab Arlington TX 76019 USA
This paper summarizes the top contributions to the first challenge on thermal image super-resolution (TISR), which was organized as part of the Perception Beyond the Visible Spectrum (PBVS) 2020 workshop. In this chal... 详细信息
来源: 评论
FoNet: A Memory-efficient Fourier-based Orthogonal Network for Object recognition
FoNet: A Memory-efficient Fourier-based Orthogonal Network f...
收藏 引用
ieee/CVF conference on computer vision and pattern recognition (cvpr)
作者: Wei, Feng Uyen Trang Nguyen Jiang, Hui York Univ Dept Elect Engn & Comp Sci 4700 Keele St Toronto ON M3J 1P3 Canada
The memory consumption of most Convolutional Neural Network (CNN) architectures grows rapidly with the increasing depth of the network, which is a major constraint for efficient network training and inference on moder... 详细信息
来源: 评论
NTIRE 2020 Challenge on Perceptual Extreme Super-Resolution: Methods and Results
NTIRE 2020 Challenge on Perceptual Extreme Super-Resolution:...
收藏 引用
ieee/CVF conference on computer vision and pattern recognition (cvpr)
作者: Zhang, Kai Gu, Shuhang Timofte, Radu Shang, Taizhang Dai, Qiuju Zhu, Shengchen Yang, Tong Guo, Yandong Jo, Younghyun Yang, Sejong Kim, Seon Joo Zha, Lin Jiang, Jiande Gao, Xinbo Lu, Wen Liu, Jing Yoon, Kwangjin Jeon, Taegyun Akita, Kazutoshi Ooba, Takeru Ukita, Norimichi Luo, Zhipeng Yao, Yuehan Xu, Zhenyu He, Dongliang Wu, Wenhao Ding, Yukang Li, Chao Li, Fu Wen, Shilei Li, Jianwei Yang, Fuzhi Yang, Huan Fu, Jianlong Kim, Byung-Hoon Baek, JaeHyun Ye, Jong Chul Fan, Yuchen Huang, Thomas S. Lee, Junyeop Lee, Bokyeung Min, Jungki Kim, Gwantae Lee, Kanghyu Park, Jaihyun Mykhailych, Mykola Zhong, Haoyu Shi, Yukai Yang, Xiaojun Yang, Zhijing Lin, Liang Zhao, Tongtong Peng, Jinjia Wang, Huibing Jin, Zhi Wu, Jiahao Chen, Yifu Shang, Chenming Zhang, Huanrong Min, Jeongki Hrishikesh, P. S. Puthussery, Densen Jiji, C., V Swiss Fed Inst Technol Comp Vis Lab Zurich Switzerland OPPO Res Dongguan Guangdong Peoples R China Yonsei Univ Seoul South Korea Facebook Menlo Pk CA USA Qingdao Hiimage Technol Co Ltd Hisense Visual Technol Co Ltd Qingdao Peoples R China Xidian Univ Xian Peoples R China East China Normal Univ ECNU Multimedia & Comp Vis Lab Shanghai Peoples R China SI Analyt Co Ltd 441 Expo Ro Daejeon 34051 South Korea Toyota Technol Inst TTI Toyota Japan DeepBlue Technol Shanghai Co Ltd Shanghai Peoples R China Baidu Inc Dept Comp Vis Technol VIS Beijing Peoples R China Chinese Acad Sci Shenzhen Inst Adv Technol Shenzhen Peoples R China Peking Univ Beijing Peoples R China Founder Grp State Key Lab Digital Publishing Technol Beijing Peoples R China Shanghai Jiao Tong Univ Shanghai Peoples R China Microsoft Res Beijing Peoples R China Korea Adv Inst Sci & Technol KAIST Daejeon South Korea Amazon Web Serv Seattle WA USA Univ Illinois Champaign IL USA Korea Univ Seoul South Korea Wix Com Ltd Tel Aviv Israel Guangdong Univ Technol Guangzhou Peoples R China Sun Yat Sen Univ Guangzhou Peoples R China Dalian Maritime Univ Dalian Peoples R China Sun Yat Sen Univ Sch Intelligent Syst Engn Guangzhou Peoples R China Coll Engn Trivandrum Trivandrum Kerala India
This paper reviews the NTIRE 2020 challenge on perceptual extreme super-resolution with focus on proposed solutions and results. The challenge task was to super-resolve an input image with a magnification factor x16 b... 详细信息
来源: 评论
Bifuse: Monocular 360◦ depth estimation via bi-projection fusion
Bifuse: Monocular 360◦ depth estimation via bi-projection f...
收藏 引用
2020 ieee/CVF conference on computer vision and pattern recognition, cvpr 2020
作者: Wang, Fu-En Yeh, Yu-Hsuan Sun, Min Chiu, Wei-Chen Tsai, Yi-Hsuan National Tsing Hua University Taiwan National Chiao Tung University Taiwan ASUS AICS Department NEC Labs America MOST Joint Research Center for AI Technology and All Vista Healthcare
Depth estimation from a monocular 360◦ image is an emerging problem that gains popularity due to the availability of consumer-level 360◦ cameras and the complete surrounding sensing capability. While the standard of 3... 详细信息
来源: 评论
MAGSAC++, a fast, reliable and accurate robust estimator
MAGSAC++, a fast, reliable and accurate robust estimator
收藏 引用
2020 ieee/CVF conference on computer vision and pattern recognition, cvpr 2020
作者: Barath, Daniel Noskova, Jana Ivashechkin, Maksym Matas, Jiri Visual Recognition Group Department of Cybernetics Czech Technical University Prague Czech Republic Machine Perception Research Laboratory MTA SZTAKI Budapest Hungary
We propose MAGSAC++ and Progressive NAPSAC sampler, P-NAPSAC in short. In MAGSAC++, we replace the model quality and polishing functions of the original method by an iteratively re-weighted least-squares fitting with ... 详细信息
来源: 评论
NTIRE 2020 Challenge on Real Image Denoising: Dataset, Methods and Results
NTIRE 2020 Challenge on Real Image Denoising: Dataset, Metho...
收藏 引用
ieee/CVF conference on computer vision and pattern recognition (cvpr)
作者: Abdelhamed, Abdelrahman Afifi, Mahmoud Timofte, Radu Brown, Michael S. Cao, Yue Zhang, Zhilu Zuo, Wangmeng Zhang, Xiaoling Liu, Jiye Chen, Wendong Wen, Changyuan Liu, Meng Lv, Shuailin Zhang, Yunchao Pan, Zhihong Li, Baopu Xi, Teng Fan, Yanwen Yu, Xiyu Zhang, Gang Liu, Jingtuo Han, Junyu Ding, Errui Yu, Songhyun Park, Bumjun Jeong, Jechang Liu, Shuai Zong, Ziyao Nan, Nan Li, Chenghua Yang, Zengli Bao, Long Wang, Shuangquan Bai, Dongwoon Lee, Jungwon Kim, Youngjung Rho, Kyeongha Shin, Changyeop Kim, Sungho Tang, Pengliang Zhao, Yiyun Zhou, Yuqian Fan, Yuchen Huang, Thomas Li, Zhihao Shah, Nisarg A. Liu, Wei Yan, Qiong Zhao, Yuzhi Mozejko, Marcin Latkowski, Tomasz Treszczotko, Lukasz Szafraniuk, Michal Trojanowski, Krzysztof Wu, Yanhong Michelini, Pablo Navarrete Hu, Fengshuo Lu, Yunhua Kim, Sujin Kim, Wonjin Lee, Jaayeon Choi, Jang-Hwan Zhussip, Magauiya Khassenov, Azamat Kim, Jong Hyun Cho, Hwechul Kansal, Priya Nathan, Sabari Ye, Zhangyu Lu, Xiwen Wu, Yaqi Yang, Jiangxin Cao, Yanlong Tang, Siliang Cao, Yanpeng Maggioni, Matteo Marras, Ioannis Tanay, Thomas Slabaugh, Gregory Yan, Youliang Kang, Myungjoo Choi, Han-Soo Song, Kyungmin Xu, Shusong Lu, Xiaomu Wang, Tingniao Lei, Chunxia Liu, Bin Gupta, Rajat Kumar, Vineet York Univ York N Yorkshire England Swiss Fed Inst Technol Zurich Switzerland Harbin Inst Technol Harbin Peoples R China Huawei Shenzhen Peoples R China Baidu Res Seattle WA USA Baidu Inc Dept Comp Vis Technol VIS Beijing Peoples R China Hanyang Univ Seoul South Korea North China Univ Technol Beijing Peoples R China Chinese Acad Sci Inst Automat Beijing Peoples R China Samsung Semicond Inc San Jose CA USA Agcy Def Dev Seoul South Korea Beijing Univ Posts & Telecommun Beijing Peoples R China Univ Illinois Champaign IL USA Nanjing Univ Nanjing Peoples R China Indian Inst Technol Jodhpur Rajasthan India SenseTime Res Hong Kong Peoples R China TCL Res Europe Warsaw Poland BOE Artificial Intelligence & Big Data Res Inst Beijing Peoples R China Seoul Natl Univ Seoul South Korea ST Unitas Seoul South Korea Ewha Womans Univ Seoul South Korea Couger Inc Tokyo Japan Zhejiang Univ Hangzhou Peoples R China Nanjing Univ Aeronaut & Astronaut Nanjing Peoples R China Harbin Inst Technol Shenzhen Shenzhen Peoples R China Huawei Technol Res & Dev UK Ltd Noahs Ark Lab London London England Dahua Technol Hangzhou Peoples R China Indian Inst Technol Kharagpur Kharagpur W Bengal India
This paper reviews the NTIRE 2020 challenge on real image denoising with focus on the newly introduced dataset, the proposed methods and their results. The challenge is a new version of the previous NTIRE 2019 challen... 详细信息
来源: 评论
NTIRE 2022 Challenge on High Dynamic Range Imaging: Methods and Results
NTIRE 2022 Challenge on High Dynamic Range Imaging: Methods ...
收藏 引用
ieee computer society conference on computer vision and pattern recognition Workshops (cvprW)
作者: Eduardo Pé rez-Pellitero Sibi Catley-Chandar Richard Shaw Aleš Leonardis Radu Timofte Zexin Zhang Cen Liu Yunbo Peng Yue Lin Gaocheng Yu Jin Zhang Zhe Ma Hongbin Wang Xiangyu Chen Xintao Wang Haiwei Wu Lin Liu Chao Dong Jiantao Zhou Qingsen Yan Song Zhang Weiye Chen Yuhang Liu Zhen Zhang Yanning Zhang Javen Qinfeng Shi Dong Gong Dan Zhu Mengdi Sun Guannan Chen Yang Hu Haowei Li Baozhu Zou Zhen Liu Wenjie Lin Ting Jiang Chengzhi Jiang Xinpeng Li Mingyan Han Haoqiang Fan Jian Sun Shuaicheng Liu Juan Marí n-Vega Michael Sloth Peter Schneider-Kamp Richard Rö ttger Chunyang Li Long Bao Gang He Ziyao Xu Li Xu Gen Zhan Ming Sun Xing Wen Junlin Li Jinjing Li Chenghua Li Ruipeng Gang Fangya Li Chenming Liu Shuang Feng Fei Lei Rui Liu Junxiang Ruan Tianhong Dai Wei Li Zhan Lu Hengyan Liu Peian Huang Guangyu Ren Yonglin Luo Chang Liu Qiang Tu Sai Ma Yizhen Cao Steven Tel Barthelemy Heyrman Dominique Ginhac Chul Lee Gahyeon Kim Seonghyun Park An Gia Vien Truong Thanh Nhat Mai Howoon Yoon Tu Vo Alexander Holston Sheir Zaheer Chan Y. Park Huawei Noah&#x2019 s Ark Laboratory ETH Z&#x00FC rich University of W&#x00FC rzburg
This paper reviews the challenge on constrained high dynamic range (HDR) imaging that was part of the New Trends in Image Restoration and Enhancement (NTIRE) workshop, held in conjunction with cvpr 2022. This manuscri... 详细信息
来源: 评论