咨询与建议

限定检索结果

文献类型

  • 6,639 篇 会议
  • 34 篇 期刊文献
  • 5 册 图书

馆藏范围

  • 6,677 篇 电子文献
  • 1 种 纸本馆藏

日期分布

学科分类号

  • 3,950 篇 工学
    • 3,725 篇 计算机科学与技术...
    • 1,476 篇 软件工程
    • 807 篇 光学工程
    • 323 篇 信息与通信工程
    • 240 篇 控制科学与工程
    • 206 篇 机械工程
    • 169 篇 电气工程
    • 85 篇 生物医学工程(可授...
    • 73 篇 电子科学与技术(可...
    • 70 篇 生物工程
    • 65 篇 仪器科学与技术
    • 38 篇 建筑学
    • 36 篇 土木工程
    • 34 篇 力学(可授工学、理...
    • 32 篇 航空宇航科学与技...
    • 29 篇 安全科学与工程
    • 23 篇 化学工程与技术
    • 21 篇 材料科学与工程(可...
  • 1,498 篇 理学
    • 969 篇 物理学
    • 929 篇 数学
    • 369 篇 统计学(可授理学、...
    • 136 篇 生物学
    • 40 篇 系统科学
    • 26 篇 化学
  • 210 篇 医学
    • 210 篇 临床医学
    • 23 篇 基础医学(可授医学...
  • 165 篇 管理学
    • 123 篇 图书情报与档案管...
    • 44 篇 管理科学与工程(可...
    • 29 篇 工商管理
  • 21 篇 法学
    • 21 篇 社会学
  • 10 篇 农学
  • 9 篇 教育学
  • 6 篇 经济学
  • 2 篇 军事学
  • 1 篇 艺术学

主题

  • 2,364 篇 computer vision
  • 848 篇 pattern recognit...
  • 663 篇 cameras
  • 634 篇 computer science
  • 592 篇 face recognition
  • 558 篇 layout
  • 541 篇 conferences
  • 527 篇 image segmentati...
  • 514 篇 shape
  • 454 篇 object recogniti...
  • 453 篇 robustness
  • 394 篇 humans
  • 339 篇 feature extracti...
  • 324 篇 training
  • 305 篇 object detection
  • 263 篇 image recognitio...
  • 260 篇 application soft...
  • 249 篇 lighting
  • 248 篇 computational mo...
  • 238 篇 image reconstruc...

机构

  • 44 篇 microsoft resear...
  • 27 篇 department of co...
  • 21 篇 swiss fed inst t...
  • 21 篇 school of comput...
  • 21 篇 carnegie mellon ...
  • 20 篇 department of co...
  • 19 篇 swiss fed inst t...
  • 18 篇 department of co...
  • 17 篇 department of in...
  • 17 篇 the robotics ins...
  • 17 篇 institute of com...
  • 16 篇 univ sci & techn...
  • 16 篇 robotics institu...
  • 15 篇 tsinghua univ pe...
  • 14 篇 department of el...
  • 14 篇 center for autom...
  • 14 篇 school of comput...
  • 14 篇 school of comput...
  • 13 篇 univ maryland co...
  • 13 篇 microsoft resear...

作者

  • 39 篇 timofte radu
  • 28 篇 s.k. nayar
  • 25 篇 huang thomas s.
  • 24 篇 xiaoou tang
  • 22 篇 t. kanade
  • 20 篇 chellappa rama
  • 20 篇 t.s. huang
  • 19 篇 van gool luc
  • 19 篇 nayar shree k.
  • 19 篇 t. darrell
  • 17 篇 a.k. jain
  • 17 篇 a. zisserman
  • 17 篇 heung-yeung shum
  • 17 篇 jain anil k.
  • 17 篇 zisserman andrew
  • 16 篇 g. healey
  • 16 篇 torralba antonio
  • 16 篇 l. van gool
  • 15 篇 ying wu
  • 15 篇 m. shah

语言

  • 6,661 篇 英文
  • 9 篇 其他
  • 8 篇 中文
检索条件"任意字段=2003 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, CVPR 2003"
6678 条 记 录,以下是1141-1150 订阅
排序:
Implementation of an Anomalous Human Activity recognition System
收藏 引用
SN computer Science 2020年 第3期1卷 1-10页
作者: Shreyas, D.G. Raksha, S. Prasad, B.G. B. M. S. College of Engineering Bengaluru India
This paper brings to light one of the most prominent applications of human activity recognition which is the anomaly detection. Providing security to an individual is a major concern of any society today due to the co... 详细信息
来源: 评论
Proceedings of the ieee computer society conference on computer vision and pattern recognition
Proceedings of the IEEE Computer Society Conference on Compu...
收藏 引用
30th ieee conference on computer vision and pattern recognition, cvpr 2017
The proceedings contain 781 papers. The topics discussed include: exclusivity-consistency regularized multi-view subspace clustering;borrowing treasures from the wealthy: deep transfer learning through selective joint...
来源: 评论
WiCV 2019: The Sixth Women In computer vision Workshop  32
WiCV 2019: The Sixth Women In Computer Vision Workshop
收藏 引用
32nd ieee/CVF conference on computer vision and pattern recognition (cvpr)
作者: Amerini, Irene Balashova, Elena Ebrahimi, Sayna Leonard, Kathryn Nagrani, Arsha Salvador, Amaia Univ Florence Florence Italy Princeton Univ Princeton NJ 08544 USA Univ Calif Berkeley Berkeley CA USA Occident Coll Los Angeles CA USA Univ Oxford Oxford England Univ Politen Catalunya Barcelona Spain
In this paper we present the Women in computer vision Workshop - WiCV 2019, organized in conjunction with cvpr 2019. This event is meant for increasing the visibility and inclusion of women researchers in computer vis... 详细信息
来源: 评论
Isospectralization, or how to hear shape, style, and correspondence  32
Isospectralization, or how to hear shape, style, and corresp...
收藏 引用
32nd ieee/CVF conference on computer vision and pattern recognition (cvpr)
作者: Cosmo, Luca Panine, Mikhail Rampini, Arianna Ovsjanikov, Maks Bronstein, Michael M. Rodola, Emanuele Univ Venice Venice Italy Ecole Polytech Palaiseau France Sapienza Univ Rome Rome Italy USI Imperial Coll London London England
The question whether one can recover the shape of a geometric object from its Laplacian spectrum ('hear the shape of the drum') is a classical problem in spectral geometry with a broad range of implications an... 详细信息
来源: 评论
Non-local Meets Global: An Integrated Paradigm for Hyperspectral Denoising  32
Non-local Meets Global: An Integrated Paradigm for Hyperspec...
收藏 引用
ieee/CVF conference on computer vision and pattern recognition (cvpr)
作者: He, Wei Yao, Quanming Li, Chao Yokoya, Naoto Zhao, Qibin RIKEN AIP Tokyo Japan HKUST Hong Kong Peoples R China
Non-local low-rank tensor approximation has been developed as a state-of-the-art method for hyperspectral image (HSI) denoising. Unfortunately, while their denoising performance benefits little from more spectral band... 详细信息
来源: 评论
Recognizing Multi-Modal Face Spoofing with Face recognition Networks  32
Recognizing Multi-Modal Face Spoofing with Face Recognition ...
收藏 引用
32nd ieee/CVF conference on computer vision and pattern recognition (cvpr)
作者: Parkin, Aleksandr Grinchuk, Oleg VisionLabs Amsterdam Netherlands
Detecting spoofing attacks plays a vital role for deploying automatic face recognition for biometric authentication in applications such as access control, face payment, device unlock, etc. In this paper we propose a ... 详细信息
来源: 评论
U-Net based convolutional neural network for skeleton extraction  32
U-Net based convolutional neural network for skeleton extrac...
收藏 引用
32nd ieee/CVF conference on computer vision and pattern recognition (cvpr)
作者: Panichev, Oleg Voloshyna, Alona Ciklum Amosova Str 12 Kiev Ukraine
Skeletonization is a process aimed to extract a line-like object shape representation, skeleton, which is of great interest for optical character recognition, shape-based object matching, recognition, biomedical image... 详细信息
来源: 评论
FaceBagNet: Bag-of-local-features Model for Multi-modal Face Anti-spoofing  32
FaceBagNet: Bag-of-local-features Model for Multi-modal Face...
收藏 引用
32nd ieee/CVF conference on computer vision and pattern recognition (cvpr)
作者: Shen, Tao Huang, Yuyu Tong, Zhijun ReadSense Shanghai Peoples R China
Face anti-spoofing detection is a crucial procedure in biometric face recognition systems. State-of-the-art approaches, based on Convolutional Neural Networks (CNNs), present good results in this field. However, previ... 详细信息
来源: 评论
Simultaneous Identification and Tracking of Multiple People using Video and IMUs  32
Simultaneous Identification and Tracking of Multiple People ...
收藏 引用
32nd ieee/CVF conference on computer vision and pattern recognition (cvpr)
作者: Henschel, Roberto von Marcard, Timo Rosenhahn, Bodo Leibniz Univ Hannover Hannover Germany
Most modern approaches for multiple people tracking rely on human appearance to exploit similarity between person detections. In this work, we propose an alternative tracking method that does not depend on visual appe... 详细信息
来源: 评论
GFrames: Gradient-Based Local Reference Frame for 3D Shape Matching  32
GFrames: Gradient-Based Local Reference Frame for 3D Shape M...
收藏 引用
ieee/CVF conference on computer vision and pattern recognition (cvpr)
作者: Melzi, Simone Spezialetti, Riccardo Tombari, Federico Bronstein, Michael M. Di Stefano, Luigi Rodola, Emanuele Univ Verona Verona Italy Univ Bologna Bologna Italy Tech Univ Munich Munich Germany Imperial Coll London USI London England Sapienza Univ Rome Rome Italy
We introduce GFrames, a novel local reference frame (LRF) construction for 3D meshes and point clouds. GFrames are based on the computation of the intrinsic gradient of a scalar field defined on top of the input shape... 详细信息
来源: 评论