咨询与建议

限定检索结果

文献类型

  • 6,639 篇 会议
  • 34 篇 期刊文献
  • 5 册 图书

馆藏范围

  • 6,677 篇 电子文献
  • 1 种 纸本馆藏

日期分布

学科分类号

  • 3,950 篇 工学
    • 3,725 篇 计算机科学与技术...
    • 1,476 篇 软件工程
    • 807 篇 光学工程
    • 323 篇 信息与通信工程
    • 240 篇 控制科学与工程
    • 206 篇 机械工程
    • 169 篇 电气工程
    • 85 篇 生物医学工程(可授...
    • 73 篇 电子科学与技术(可...
    • 70 篇 生物工程
    • 65 篇 仪器科学与技术
    • 38 篇 建筑学
    • 36 篇 土木工程
    • 34 篇 力学(可授工学、理...
    • 32 篇 航空宇航科学与技...
    • 29 篇 安全科学与工程
    • 23 篇 化学工程与技术
    • 21 篇 材料科学与工程(可...
  • 1,498 篇 理学
    • 969 篇 物理学
    • 929 篇 数学
    • 369 篇 统计学(可授理学、...
    • 136 篇 生物学
    • 40 篇 系统科学
    • 26 篇 化学
  • 210 篇 医学
    • 210 篇 临床医学
    • 23 篇 基础医学(可授医学...
  • 165 篇 管理学
    • 123 篇 图书情报与档案管...
    • 44 篇 管理科学与工程(可...
    • 29 篇 工商管理
  • 21 篇 法学
    • 21 篇 社会学
  • 10 篇 农学
  • 9 篇 教育学
  • 6 篇 经济学
  • 2 篇 军事学
  • 1 篇 艺术学

主题

  • 2,364 篇 computer vision
  • 847 篇 pattern recognit...
  • 663 篇 cameras
  • 634 篇 computer science
  • 592 篇 face recognition
  • 555 篇 layout
  • 541 篇 conferences
  • 527 篇 image segmentati...
  • 519 篇 shape
  • 463 篇 object recogniti...
  • 447 篇 robustness
  • 393 篇 humans
  • 340 篇 feature extracti...
  • 320 篇 training
  • 305 篇 object detection
  • 261 篇 image recognitio...
  • 260 篇 application soft...
  • 249 篇 lighting
  • 246 篇 computational mo...
  • 237 篇 image reconstruc...

机构

  • 44 篇 microsoft resear...
  • 27 篇 department of co...
  • 21 篇 swiss fed inst t...
  • 21 篇 school of comput...
  • 21 篇 carnegie mellon ...
  • 20 篇 department of co...
  • 19 篇 swiss fed inst t...
  • 18 篇 department of co...
  • 17 篇 department of in...
  • 17 篇 the robotics ins...
  • 17 篇 institute of com...
  • 16 篇 univ sci & techn...
  • 16 篇 robotics institu...
  • 15 篇 tsinghua univ pe...
  • 14 篇 department of el...
  • 14 篇 center for autom...
  • 14 篇 school of comput...
  • 14 篇 school of comput...
  • 14 篇 computer science...
  • 13 篇 univ maryland co...

作者

  • 39 篇 timofte radu
  • 29 篇 s.k. nayar
  • 25 篇 huang thomas s.
  • 24 篇 xiaoou tang
  • 22 篇 t. kanade
  • 20 篇 t. darrell
  • 19 篇 van gool luc
  • 19 篇 nayar shree k.
  • 19 篇 chellappa rama
  • 18 篇 t.s. huang
  • 17 篇 a.k. jain
  • 17 篇 a. zisserman
  • 17 篇 heung-yeung shum
  • 17 篇 zisserman andrew
  • 16 篇 g. healey
  • 16 篇 torralba antonio
  • 16 篇 jain anil k.
  • 16 篇 r. szeliski
  • 15 篇 ying wu
  • 15 篇 m. shah

语言

  • 6,661 篇 英文
  • 9 篇 其他
  • 8 篇 中文
检索条件"任意字段=2003 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, CVPR 2003"
6678 条 记 录,以下是1181-1190 订阅
排序:
Real-Time 6DOF Pose Relocalization for Event Cameras with Stacked Spatial LSTM Networks  32
Real-Time 6DOF Pose Relocalization for Event Cameras with St...
收藏 引用
32nd ieee/CVF conference on computer vision and pattern recognition (cvpr)
作者: Anh Nguyen Thanh-Toan Do Caldwell, Darwin G. Tsagarakis, Nikos G. Ist Italiano Tecnol Genoa Italy Univ Liverpool Liverpool Merseyside England AIOZ Pte Ltd Singapore Singapore
We present a new method to relocalize the 6DOF pose of an event camera solely based on the event stream. Our method first creates the event image from a list of events that occurs in a very short time interval, then a... 详细信息
来源: 评论
Temporal Hockey Action recognition via Pose and Optical Flows  32
Temporal Hockey Action Recognition via Pose and Optical Flow...
收藏 引用
32nd ieee/CVF conference on computer vision and pattern recognition (cvpr)
作者: Cai, Zixi Neher, Helmut Vats, Kanav Clausi, David A. Zelek, John Tsinghua Univ Beijing Peoples R China Univ Waterloo Waterloo ON Canada
In this paper, a novel two-stream architecture has been designed to improve action recognition accuracy for hockey using three main components. First, pose is estimated via the Part Affinity Fields model to extract me... 详细信息
来源: 评论
Characterizing the Variability in Face recognition Accuracy Relative to Race  32
Characterizing the Variability in Face Recognition Accuracy ...
收藏 引用
32nd ieee/CVF conference on computer vision and pattern recognition (cvpr)
作者: Krishnapriya, K. S. Vangara, Kushal King, Michael C. Albiero, Vitor Bowyer, Kevin Florida Inst Technol Melbourne FL 32901 USA Univ Notre Dame Notre Dame IN 46556 USA
Many recent news headlines have labeled face recognition technology as "biased" or "racist". We report on a methodical investigation into differences in face recognition accuracy between African Am... 详细信息
来源: 评论
Evading Face recognition via Partial Tampering of Faces  32
Evading Face Recognition via Partial Tampering of Faces
收藏 引用
32nd ieee/CVF conference on computer vision and pattern recognition (cvpr)
作者: Majumdar, Puspita Agarwal, Akshay Singh, Richa Vatsa, Mayank IIIT Delhi Delhi India
Advancements in machine learning and deep learning techniques have led to the development of sophisticated and accurate face recognition systems. However, for the past few years, researchers are exploring the vulnerab... 详细信息
来源: 评论
WiFi and vision Multimodal Learning for Accurate and Robust Device -Free Human Activity recognition  32
WiFi and Vision Multimodal Learning for Accurate and Robust ...
收藏 引用
32nd ieee/CVF conference on computer vision and pattern recognition (cvpr)
作者: Zou, Han Yang, Jianfei Das, Hari Prasanna Liu, Huihan Zhou, Yuxun Spanos, Costas J. Univ Calif Berkeley Dept Elect Engn & Comp Sci Berkeley CA 94720 USA Nanyang Technol Univ Sch Elect & Elect Engn Singapore Singapore
Human activity recognition plays an indispensable role in a myriad of emerging applications in context-aware services. Accurate activity recognition systems usually require the user to carry mobile or wearable devices... 详细信息
来源: 评论
AnonymousNet: Natural Face De-Identification with Measurable Privacy  32
AnonymousNet: Natural Face De-Identification with Measurable...
收藏 引用
32nd ieee/CVF conference on computer vision and pattern recognition (cvpr)
作者: Li, Tao Lin, Lei Purdue Univ Dept Comp Sci W Lafayette IN 47907 USA Univ Rochester Goergen Inst Data Sci Rochester NY 14627 USA
With billions of personal images being generated from social media and cameras of all sorts on a daily basis, security and privacy are unprecedentedly challenged. Although extensive attempts have been made, existing f... 详细信息
来源: 评论
Deep Anomaly Detection for Generalized Face Anti-Spoofing  32
Deep Anomaly Detection for Generalized Face Anti-Spoofing
收藏 引用
32nd ieee/CVF conference on computer vision and pattern recognition (cvpr)
作者: Perez-Cabo, Daniel Jimenez-Cabello, David Costa-Pazo, Artur Lopez-Sastre, Roberto J. Gradiant UVigo Vigo Spain Gradiant Vigo Spain Univ Alcala Alcala De Henares Spain
Face recognition has achieved unprecedented results, surpassing human capabilities in certain scenarios. However, these automatic solutions are not ready for production because they can be easily fooled by simple iden... 详细信息
来源: 评论
Face recognition Algorithm Bias: Performance Differences on Images of Children and Adults  32
Face Recognition Algorithm Bias: Performance Differences on ...
收藏 引用
32nd ieee/CVF conference on computer vision and pattern recognition (cvpr)
作者: Srinivas, Nisha Ricanek, Karl Michalski, Dana Bolme, David S. King, Michael Univ North Carolina Wilmington Wilmington NC 28403 USA Def Sci & Technol Grp Edinburgh SA Australia Oak Ridge Natl Lab Oak Ridge TN USA Florida Inst Technol Melbourne FL 32901 USA
In this work, we examine if current state-of-the-art deep learning face recognition systems exhibit a negative bias (i.e., poorer performance) for children when compared to the performance obtained on adults. The syst... 详细信息
来源: 评论
Weakly Supervised Person Re-Identification  32
Weakly Supervised Person Re-Identification
收藏 引用
32nd ieee/CVF conference on computer vision and pattern recognition (cvpr)
作者: Meng, Jingke Wu, Sheng Zheng, Wei-Shi Sun Yat Sen Univ Sch Data & Comp Sci Guangzhou Guangdong Peoples R China Minist Educ Key Lab Machine Intelligence & Adv Comp Beijing Peoples R China Accuvis Technol Co Ltd Beijing Peoples R China
In the conventional person re-id setting, it is assumed that the labeled images are the person images within the bounding box for each individual;this labeling across multiple nonoverlapping camera views from raw vide... 详细信息
来源: 评论
Cross-stream Selective Networks for Action recognition  32
Cross-stream Selective Networks for Action Recognition
收藏 引用
32nd ieee/CVF conference on computer vision and pattern recognition (cvpr)
作者: Pan, Bowen Sun, Jiankai Lin, Wuwei Wang, Limin Lin, Weiyao Shanghai Jiao Tong Univ Shanghai Peoples R China SenseTime Res Hong Kong Peoples R China Nanjing Univ State Key Lab Novel Software Technol Nanjing Jiangsu Peoples R China
Combining multiple information streams has shown obvious improvements in video action recognition. Most existing works handle each stream independently or perform a simple combination on temporally simultaneous sample... 详细信息
来源: 评论