咨询与建议

限定检索结果

文献类型

  • 6,639 篇 会议
  • 34 篇 期刊文献
  • 5 册 图书

馆藏范围

  • 6,677 篇 电子文献
  • 1 种 纸本馆藏

日期分布

学科分类号

  • 3,950 篇 工学
    • 3,725 篇 计算机科学与技术...
    • 1,476 篇 软件工程
    • 807 篇 光学工程
    • 323 篇 信息与通信工程
    • 240 篇 控制科学与工程
    • 206 篇 机械工程
    • 169 篇 电气工程
    • 85 篇 生物医学工程(可授...
    • 73 篇 电子科学与技术(可...
    • 70 篇 生物工程
    • 65 篇 仪器科学与技术
    • 38 篇 建筑学
    • 36 篇 土木工程
    • 34 篇 力学(可授工学、理...
    • 32 篇 航空宇航科学与技...
    • 29 篇 安全科学与工程
    • 23 篇 化学工程与技术
    • 21 篇 材料科学与工程(可...
  • 1,498 篇 理学
    • 969 篇 物理学
    • 929 篇 数学
    • 369 篇 统计学(可授理学、...
    • 136 篇 生物学
    • 40 篇 系统科学
    • 26 篇 化学
  • 210 篇 医学
    • 210 篇 临床医学
    • 23 篇 基础医学(可授医学...
  • 165 篇 管理学
    • 123 篇 图书情报与档案管...
    • 44 篇 管理科学与工程(可...
    • 29 篇 工商管理
  • 21 篇 法学
    • 21 篇 社会学
  • 10 篇 农学
  • 9 篇 教育学
  • 6 篇 经济学
  • 2 篇 军事学
  • 1 篇 艺术学

主题

  • 2,364 篇 computer vision
  • 848 篇 pattern recognit...
  • 663 篇 cameras
  • 634 篇 computer science
  • 592 篇 face recognition
  • 558 篇 layout
  • 541 篇 conferences
  • 527 篇 image segmentati...
  • 514 篇 shape
  • 454 篇 object recogniti...
  • 453 篇 robustness
  • 394 篇 humans
  • 339 篇 feature extracti...
  • 324 篇 training
  • 305 篇 object detection
  • 263 篇 image recognitio...
  • 260 篇 application soft...
  • 249 篇 lighting
  • 248 篇 computational mo...
  • 238 篇 image reconstruc...

机构

  • 44 篇 microsoft resear...
  • 27 篇 department of co...
  • 21 篇 swiss fed inst t...
  • 21 篇 school of comput...
  • 21 篇 carnegie mellon ...
  • 20 篇 department of co...
  • 19 篇 swiss fed inst t...
  • 18 篇 department of co...
  • 17 篇 department of in...
  • 17 篇 the robotics ins...
  • 17 篇 institute of com...
  • 16 篇 univ sci & techn...
  • 16 篇 robotics institu...
  • 15 篇 tsinghua univ pe...
  • 14 篇 department of el...
  • 14 篇 center for autom...
  • 14 篇 school of comput...
  • 14 篇 school of comput...
  • 13 篇 univ maryland co...
  • 13 篇 microsoft resear...

作者

  • 39 篇 timofte radu
  • 28 篇 s.k. nayar
  • 25 篇 huang thomas s.
  • 24 篇 xiaoou tang
  • 22 篇 t. kanade
  • 20 篇 chellappa rama
  • 20 篇 t.s. huang
  • 19 篇 van gool luc
  • 19 篇 nayar shree k.
  • 19 篇 t. darrell
  • 17 篇 a.k. jain
  • 17 篇 a. zisserman
  • 17 篇 heung-yeung shum
  • 17 篇 jain anil k.
  • 17 篇 zisserman andrew
  • 16 篇 g. healey
  • 16 篇 torralba antonio
  • 16 篇 l. van gool
  • 15 篇 ying wu
  • 15 篇 m. shah

语言

  • 6,659 篇 英文
  • 11 篇 其他
  • 8 篇 中文
检索条件"任意字段=2003 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, CVPR 2003"
6678 条 记 录,以下是1331-1340 订阅
排序:
Cross-Domain Hallucination Network for Fine-Grained Object recognition
Cross-Domain Hallucination Network for Fine-Grained Object R...
收藏 引用
ieee/CVF conference on computer vision and pattern recognition (cvpr)
作者: Lin, Jin-Fu Lin, Yen-Liang King, Erh-Kan Su, Hung-Ting Hsu, Winston H. Natl Taiwan Univ Taipei Taiwan GE Global Res Niskayuna NY USA
Existing fine-grained object recognition methods often require high-resolution images to better discriminate the subordinate classes. However, this assumption does not always hold in current surveillance systems, wher... 详细信息
来源: 评论
IFQ-Net: Integrated Fixed-point Quantization Networks for Embedded vision  31
IFQ-Net: Integrated Fixed-point Quantization Networks for Em...
收藏 引用
ieee/CVF conference on computer vision and pattern recognition (cvpr)
作者: Gao, Hongxing Tao, Wei Wen, Dongchao Chen, Tse-Wei Osa, Kinya Kato, Masami Canon Informat Technol Beijing Co LTD Beijing Peoples R China Canon Inc Device Technol Dev Headquarters Tokyo Japan
Deploying deep models on embedded devices has been a challenging problem since the great success of deep learning based networks. Fixed-point networks, which represent their data with low bits fixed-point and thus giv... 详细信息
来源: 评论
SkeletonNet: Shape Pixel to Skeleton Pixel
SkeletonNet: Shape Pixel to Skeleton Pixel
收藏 引用
ieee computer society conference on computer vision and pattern recognition Workshops (cvprW)
作者: Sabari Nathan Priya Kansal Couger Inc.
Deep Learning for Geometric Shape Understating has organized a challenge for extracting different kinds of skeletons from the images of different objects. This competition is organized in association with cvpr 2019. T... 详细信息
来源: 评论
SINT++: Robust Visual Tracking via Adversarial Positive Instance Generation  31
SINT++: Robust Visual Tracking via Adversarial Positive Inst...
收藏 引用
31st Meeting of the ieee/CVF conference on computer vision and pattern recognition, cvpr 2018
作者: Wang, Xiao Li, Chenglong Luo, Bin Tang, Jin School of Computer Science and Technology Anhui University Hefei230601 China
Existing visual trackers are easily disturbed by occlusion, blur and large deformation. We think the performance of existing visual trackers may be limited due to the following issues: I) Adopting the dense sampling s... 详细信息
来源: 评论
Stacked Conditional Generative Adversarial Networks for Jointly Learning Shadow Detection and Shadow Removal  31
Stacked Conditional Generative Adversarial Networks for Join...
收藏 引用
31st Meeting of the ieee/CVF conference on computer vision and pattern recognition, cvpr 2018
作者: Wang, Jifeng Li, Xiang Yang, Jian DeepInsight at PCALab Nanjing University of Science and Technology China Jiangsu Key Laboratory of Image and Video Understanding for Social Security School of Computer Science and Engineering Nanjing University of Science and Technology Nanjing210094 China
Understanding shadows from a single image consists of two types of task in previous studies, containing shadow detection and shadow removal. In this paper, we present a multi-task perspective, which is not embraced by... 详细信息
来源: 评论
In Defense of Active Part Selection for Fine-Grained Classification
收藏 引用
pattern recognition and Image Analysis 2018年 第4期28卷 658-663页
作者: Korsch, D. Denzler, J. Computer Vision Group Friedrich Schiller University Jena Jena Germany
Fine-grained classification is a recognition task where subtle differences distinguish between different classes. To tackle this classification problem, part-based classification methods are mostly used. Partbased met... 详细信息
来源: 评论
3D Cell Nuclear Morphology: Microscopy Imaging Dataset and Voxel-Based Morphometry Classification Results  31
3D Cell Nuclear Morphology: Microscopy Imaging Dataset and V...
收藏 引用
ieee/CVF conference on computer vision and pattern recognition (cvpr)
作者: Kalinin, Alexandr A. Allyn-Feuer, Ari Ade, Alex Fon, Gordon-Victor Meixner, Walter Dilworth, David de Wet, Jeffrey R. Higgins, Gerald A. Zheng, Gen Creekmore, Amy Wiley, John W. Verdone, James E. Veltri, Robert W. Pienta, Kenneth J. Coffey, Donald S. Athey, Brian D. Dinov, Ivo D. Univ Michigan Sch Med Dept Computat Med & Bioinformat Ann Arbor MI 48109 USA Univ Michigan Sch Nursing SOCR Hlth Behav & Biol Sci Ann Arbor MI 48109 USA Univ Michigan Sch Med Dept Internal Med Div Gastroenterol Ann Arbor MI 48109 USA Johns Hopkins Univ Dept Urol James Buchanan Brady Urol Inst Baltimore MD 21218 USA Univ Michigan Michigan Inst Data Sci MIDAS Ann Arbor MI 48109 USA
Cell deformation is regulated by complex underlying biological mechanisms associated with spatial and temporal morphological changes in the nucleus that are related to cell differentiation, development, proliferation,... 详细信息
来源: 评论
Occluded Pedestrian Detection Through Guided Attention in CNNs  31
Occluded Pedestrian Detection Through Guided Attention in CN...
收藏 引用
ieee/CVF conference on computer vision and pattern recognition
作者: Shanshan Zhang Jian Yang Bernt Schiele Ministry of Education Key Lab of Intelligent Perception and Systems for High-Dimensional Information Jiangsu Key Lab of Image and Video Understanding for Social Security Nanjing University of Science and Technology China Saarland Informatics Campus Max Planck Institute for Informatics Germany
Pedestrian detection has progressed significantly in the last years. However, occluded people are notoriously hard to detect, as their appearance varies substantially depending on a wide range of occlusion patterns. I... 详细信息
来源: 评论
Special Section Guest Editorial: Image and Video Analysis, Detection and recognition
收藏 引用
Journal of Electronic Imaging 2018年 第5期27卷
作者: Ardizzone, Edoardo Celebi, M. Emre Palermo Italy University of Central Arkansas Department of Computer Science ConwayAR United States
This editorial summarizes the JEI Special Section on Image and Video Analysis, Detection and recognition.
来源: 评论
NTIRE 2018 Challenge on Single Image Super-Resolution: Methods and Results  31
NTIRE 2018 Challenge on Single Image Super-Resolution: Metho...
收藏 引用
ieee/CVF conference on computer vision and pattern recognition (cvpr)
作者: Timofte, Radu Gu, Shuhang Wu, Jiqing Van Gool, Luc Zhang, Lei Yang, Ming-Hsuan Haris, Muhammad Shakhnarovich, Greg Ukita, Norimichi Hu, Shijia Bei, Yijie Hui, Zheng Jiang, Xiao Gu, Yanan Liu, Jie Wang, Yifan Perazzi, Federico McWilliams, Brian Sorkin-Hornung, Alexander Sorkine-Hornung, Olga Schroers, Christopher Yu, Jiahui Fan, Yuchen Yang, Jianchao Xu, Ning Wang, Zhaowen Wang, Xinchao Huang, Thomas S. Wang, Xintao Yu, Ke Hui, Tak-Wai Dong, Chao Lin, Liang Loy, Chen Change Park, Dongwon Kim, Kwanyoung Chun, Se Young Zhang, Kai Liu, Pengjv Zuo, Wangmeng Guo, Shi Liu, Jiye Xu, Jinchang Liu, Yijiao Xiong, Fengye Dong, Yuan Bai, Hongliang Damian, Alexandru Ravi, Nikhil Menon, Sachit Rudin, Cynthia Seo, Junghoon Jeon, Taegyun Koo, Jamyoung Jeon, Seunghyun Kim, Soo Ye Choi, Jae-Seok Ki, Sehwan Seo, Soomin Sim, Hyeonjun Kim, Saehun Kim, Munchurl Chen, Rong Zeng, Kun Guo, Jinkang Qu, Yanyun Li, Cuihua Ahn, Namhyuk Kang, Byungkon Sohn, Kyung-Ah Yuan, Yuan Zhang, Jiawei Pang, Jiahao Xu, Xiangyu Zhao, Yan Deng, Wei Ul Hussain, Sibt Aadil, Muneeb Rahim, Rafia Cai, Xiaowang Huang, Fang Xu, Yueshu Michelini, Pablo Navarrete Zhu, Dan Liu, Hanwen Kim, Jun-Hyuk Lee, Jong-Seok Huang, Yiwen Qiu, Ming Jing, Liting Zeng, Jiehang Wang, Ying Sharma, Manoj Mukhopadhyay, Rudrabha Upadhyay, Avinash Koundinya, Sriharsha Shukla, Ankit Chaudhury, Santanu Zhang, Zhe Hu, Yu Hen Fu, Lingzhi Swiss Fed Inst Technol Comp Vis Lab Zurich Switzerland Merantix Berlin Germany Katholieke Univ Leuven ESAT Leuven Belgium Hong Kong Polytech Univ Hong Kong Peoples R China Univ Calif Merced Merced CA USA Toyota Technol Inst Nagoya Aichi Japan TTI Chicago Chicago IL USA Duke Univ Durham NC USA Xidian Univ Sch Elect Engn Xian Shaanxi Peoples R China Disney Res Zurich Switzerland Swiss Fed Inst Technol Zurich Switzerland Facebook Oculus Zurich Switzerland Univ Illinois Urbana IL USA Snap Inc Los Angeles CA USA Adobe Res San Jose CA USA Stevens Inst Technol Hoboken NJ 07030 USA Chinese Univ Hong Kong Hong Kong Peoples R China SenseTime Res Hong Kong Peoples R China Ulsan Natl Inst Sci & Technol Sch Elect & Comp Engn Ulsan South Korea Harbin Inst Technol Sch Comp Sci & Technol Harbin Heilongjiang Peoples R China Beijing Univ Posts & Telecommun Beijing Peoples R China Beijing Faceall Technol Co Ltd Beijing Peoples R China Satrec Initiat R&D Ctr Daejeon South Korea Korea Adv Inst Sci & Technol Daejeon South Korea Xiamen Univ Xiamen Peoples R China Ajou Univ Suwon South Korea Univ Alberta Elect & Comp Engn Edmonton AB Canada Fuzhou Univ Fuzhou Fujian Peoples R China Natl Univ Comp & Emerging Sci Islamabad Pakistan BOE Technol Grp Co Ltd Beijing Peoples R China Yonsei Univ Seoul South Korea Wenhua Coll Wuhan Hubei Peoples R China Xiamen Univ Software Sch Xiamen Peoples R China CSIR CEERI Pilani Rajasthan India Univ Wisconsin Dept Elect & Comp Engn 1415 Johnson Dr Madison WI 53706 USA Xi An Jiao Tong Univ Sch Elect & Informat Engn Inst Integrated Automat MOE KLINNS Lab Xian Shaanxi Peoples R China
This paper reviews the 2nd NTIRE challenge on single image super-resolution (restoration of rich details in a low resolution image) with focus on proposed solutions and results. The challenge had 4 tracks. Track 1 emp... 详细信息
来源: 评论