咨询与建议

限定检索结果

文献类型

  • 6,639 篇 会议
  • 34 篇 期刊文献
  • 5 册 图书

馆藏范围

  • 6,677 篇 电子文献
  • 1 种 纸本馆藏

日期分布

学科分类号

  • 3,950 篇 工学
    • 3,725 篇 计算机科学与技术...
    • 1,476 篇 软件工程
    • 807 篇 光学工程
    • 323 篇 信息与通信工程
    • 240 篇 控制科学与工程
    • 206 篇 机械工程
    • 169 篇 电气工程
    • 85 篇 生物医学工程(可授...
    • 73 篇 电子科学与技术(可...
    • 70 篇 生物工程
    • 65 篇 仪器科学与技术
    • 38 篇 建筑学
    • 36 篇 土木工程
    • 34 篇 力学(可授工学、理...
    • 32 篇 航空宇航科学与技...
    • 29 篇 安全科学与工程
    • 23 篇 化学工程与技术
    • 21 篇 材料科学与工程(可...
  • 1,498 篇 理学
    • 969 篇 物理学
    • 929 篇 数学
    • 369 篇 统计学(可授理学、...
    • 136 篇 生物学
    • 40 篇 系统科学
    • 26 篇 化学
  • 210 篇 医学
    • 210 篇 临床医学
    • 23 篇 基础医学(可授医学...
  • 165 篇 管理学
    • 123 篇 图书情报与档案管...
    • 44 篇 管理科学与工程(可...
    • 29 篇 工商管理
  • 21 篇 法学
    • 21 篇 社会学
  • 10 篇 农学
  • 9 篇 教育学
  • 6 篇 经济学
  • 2 篇 军事学
  • 1 篇 艺术学

主题

  • 2,364 篇 computer vision
  • 848 篇 pattern recognit...
  • 663 篇 cameras
  • 634 篇 computer science
  • 592 篇 face recognition
  • 558 篇 layout
  • 541 篇 conferences
  • 527 篇 image segmentati...
  • 514 篇 shape
  • 454 篇 object recogniti...
  • 453 篇 robustness
  • 394 篇 humans
  • 339 篇 feature extracti...
  • 324 篇 training
  • 305 篇 object detection
  • 263 篇 image recognitio...
  • 260 篇 application soft...
  • 249 篇 lighting
  • 248 篇 computational mo...
  • 238 篇 image reconstruc...

机构

  • 44 篇 microsoft resear...
  • 27 篇 department of co...
  • 21 篇 swiss fed inst t...
  • 21 篇 school of comput...
  • 21 篇 carnegie mellon ...
  • 20 篇 department of co...
  • 19 篇 swiss fed inst t...
  • 18 篇 department of co...
  • 17 篇 department of in...
  • 17 篇 the robotics ins...
  • 17 篇 institute of com...
  • 16 篇 univ sci & techn...
  • 16 篇 robotics institu...
  • 15 篇 tsinghua univ pe...
  • 14 篇 department of el...
  • 14 篇 center for autom...
  • 14 篇 school of comput...
  • 14 篇 school of comput...
  • 13 篇 univ maryland co...
  • 13 篇 microsoft resear...

作者

  • 39 篇 timofte radu
  • 28 篇 s.k. nayar
  • 25 篇 huang thomas s.
  • 24 篇 xiaoou tang
  • 22 篇 t. kanade
  • 20 篇 chellappa rama
  • 20 篇 t.s. huang
  • 19 篇 van gool luc
  • 19 篇 nayar shree k.
  • 19 篇 t. darrell
  • 17 篇 a.k. jain
  • 17 篇 a. zisserman
  • 17 篇 heung-yeung shum
  • 17 篇 jain anil k.
  • 17 篇 zisserman andrew
  • 16 篇 g. healey
  • 16 篇 torralba antonio
  • 16 篇 l. van gool
  • 15 篇 ying wu
  • 15 篇 m. shah

语言

  • 6,661 篇 英文
  • 9 篇 其他
  • 8 篇 中文
检索条件"任意字段=2003 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, CVPR 2003"
6678 条 记 录,以下是1531-1540 订阅
排序:
Functional faces: Groupwise dense correspondence using functional maps
Functional faces: Groupwise dense correspondence using funct...
收藏 引用
2016 ieee conference on computer vision and pattern recognition, cvpr 2016
作者: Zhang, Chao Smith, William A. P. Dessein, Arnaud Pears, Nick Dai, Hang Department of Computer Science University of York United Kingdom IMB LaBRI Université de Bordeaux France
In this paper we present a method for computing dense correspondence between a set of 3D face meshes using functional maps. The functional maps paradigm brings with it a number of advantages for face correspondence. F... 详细信息
来源: 评论
BORDER: An oriented rectangles approach to texture-less object recognition
BORDER: An oriented rectangles approach to texture-less obje...
收藏 引用
2016 ieee conference on computer vision and pattern recognition, cvpr 2016
作者: Chan, Jacob Lee, Jimmy Addison Kemao, Qian Nanyang Technological University Block N4 Nanyang Avenue Singapore639798 Singapore Singapore138632 Singapore
This paper presents an algorithm coined BORDER (Bounding Oriented-Rectangle Descriptors for Enclosed Regions) for texture-less object recognition. By fusing a regional object encompassment concept with descriptor-base... 详细信息
来源: 评论
Image captioning with semantic attention
Image captioning with semantic attention
收藏 引用
2016 ieee conference on computer vision and pattern recognition, cvpr 2016
作者: You, Quanzeng Jin, Hailin Wang, Zhaowen Fang, Chen Luo, Jiebo Department of Computer Science University of Rochester RochesterNY14627 United States Adobe Research 345 Park Ave San JoseCA95110 United States
Automatically generating a natural language description of an image has attracted interests recently both because of its importance in practical applications and because it connects two major artificial intelligence f... 详细信息
来源: 评论
Pairwise decomposition of image sequences for active multi-view recognition
Pairwise decomposition of image sequences for active multi-v...
收藏 引用
2016 ieee conference on computer vision and pattern recognition, cvpr 2016
作者: Johns, Edward Leutenegger, Stefan Davison, Andrew J. Dyson Robotics Laboratory at Imperial College Department of Computing Imperial College London United Kingdom
A multi-view image sequence provides a much richer capacity for object recognition than from a single image. However, most existing solutions to multi-view recognition typically adopt hand-crafted, model-based geometr... 详细信息
来源: 评论
Zero-shot learning via joint latent similarity embedding
Zero-shot learning via joint latent similarity embedding
收藏 引用
2016 ieee conference on computer vision and pattern recognition, cvpr 2016
作者: Zhang, Ziming Saligrama, Venkatesh Department of Electrical and Computer Engineering Boston University United States
Zero-shot recognition (ZSR) deals with the problem of predicting class labels for target domain instances based on source domain side information (e.g. attributes) of unseen classes. We formulate ZSR as a binary predi... 详细信息
来源: 评论
BoxCars: 3D boxes as CNN input for improved fine-grained vehicle recognition
BoxCars: 3D boxes as CNN input for improved fine-grained veh...
收藏 引用
2016 ieee conference on computer vision and pattern recognition, cvpr 2016
作者: Sochor, Jakub Herout, Adam Havel, Jií Graph at FIT Brno University of Technology Brno Czech Republic
We are dealing with the problem of fine-grained vehicle make & model recognition and verification. Our contribution is showing that extracting additional data from the video stream - besides the vehicle image itse... 详细信息
来源: 评论
Multi-cue zero-shot learning with strong supervision
Multi-cue zero-shot learning with strong supervision
收藏 引用
2016 ieee conference on computer vision and pattern recognition, cvpr 2016
作者: Akata, Zeynep Malinowski, Mateusz Fritz, Mario Schiele, Bernt Max-Planck Institute for Informatics United States
Scaling up visual category recognition to large numbers of classes remains challenging. A promising research direction is zero-shot learning, which does not require any training data to recognize new classes, but rath... 详细信息
来源: 评论
Discriminative invariant kernel features: A bells-and-whistles-free approach to unsupervised face recognition and pose estimation
Discriminative invariant kernel features: A bells-and-whistl...
收藏 引用
2016 ieee conference on computer vision and pattern recognition, cvpr 2016
作者: Pal, Dipan K. Juefei-Xu, Felix Savvides, Marios Carnegie Mellon University United States
We propose an explicitly discriminative and 'simple' approach to generate invariance to nuisance transformations modeled as unitary. In practice, the approach works well to handle non-unitary transformations a... 详细信息
来源: 评论
Fast zero-shot image tagging
Fast zero-shot image tagging
收藏 引用
2016 ieee conference on computer vision and pattern recognition, cvpr 2016
作者: Zhang, Yang Gong, Boqing Shah, Mubarak Center for Research in Computer Vision University of Central Florida OrlandoFL32816 United States
The well-known word analogy experiments show that the recent word vectors capture fine-grained linguistic regularities in words by linear vector offsets, but it is unclear how well the simple vector offsets can encode... 详细信息
来源: 评论
Monocular depth estimation using neural regression forest
Monocular depth estimation using neural regression forest
收藏 引用
2016 ieee conference on computer vision and pattern recognition, cvpr 2016
作者: Roy, Anirban Todorovic, Sinisa Oregon State University CorvallisOR97331 United States
This paper presents a novel deep architecture, called neural regression forest (NRF), for depth estimation from a single image. NRF combines random forests and convolutional neural networks (CNNs). Scanning windows ex... 详细信息
来源: 评论