咨询与建议

限定检索结果

文献类型

  • 6,639 篇 会议
  • 34 篇 期刊文献
  • 5 册 图书

馆藏范围

  • 6,677 篇 电子文献
  • 1 种 纸本馆藏

日期分布

学科分类号

  • 3,950 篇 工学
    • 3,725 篇 计算机科学与技术...
    • 1,476 篇 软件工程
    • 807 篇 光学工程
    • 323 篇 信息与通信工程
    • 240 篇 控制科学与工程
    • 206 篇 机械工程
    • 169 篇 电气工程
    • 85 篇 生物医学工程(可授...
    • 73 篇 电子科学与技术(可...
    • 70 篇 生物工程
    • 65 篇 仪器科学与技术
    • 38 篇 建筑学
    • 36 篇 土木工程
    • 34 篇 力学(可授工学、理...
    • 32 篇 航空宇航科学与技...
    • 29 篇 安全科学与工程
    • 23 篇 化学工程与技术
    • 21 篇 材料科学与工程(可...
  • 1,498 篇 理学
    • 969 篇 物理学
    • 929 篇 数学
    • 369 篇 统计学(可授理学、...
    • 136 篇 生物学
    • 40 篇 系统科学
    • 26 篇 化学
  • 210 篇 医学
    • 210 篇 临床医学
    • 23 篇 基础医学(可授医学...
  • 165 篇 管理学
    • 123 篇 图书情报与档案管...
    • 44 篇 管理科学与工程(可...
    • 29 篇 工商管理
  • 21 篇 法学
    • 21 篇 社会学
  • 10 篇 农学
  • 9 篇 教育学
  • 6 篇 经济学
  • 2 篇 军事学
  • 1 篇 艺术学

主题

  • 2,364 篇 computer vision
  • 848 篇 pattern recognit...
  • 663 篇 cameras
  • 634 篇 computer science
  • 592 篇 face recognition
  • 558 篇 layout
  • 541 篇 conferences
  • 527 篇 image segmentati...
  • 514 篇 shape
  • 454 篇 object recogniti...
  • 453 篇 robustness
  • 394 篇 humans
  • 339 篇 feature extracti...
  • 324 篇 training
  • 305 篇 object detection
  • 263 篇 image recognitio...
  • 260 篇 application soft...
  • 249 篇 lighting
  • 248 篇 computational mo...
  • 238 篇 image reconstruc...

机构

  • 44 篇 microsoft resear...
  • 27 篇 department of co...
  • 21 篇 swiss fed inst t...
  • 21 篇 school of comput...
  • 21 篇 carnegie mellon ...
  • 20 篇 department of co...
  • 19 篇 swiss fed inst t...
  • 18 篇 department of co...
  • 17 篇 department of in...
  • 17 篇 the robotics ins...
  • 17 篇 institute of com...
  • 16 篇 univ sci & techn...
  • 16 篇 robotics institu...
  • 15 篇 tsinghua univ pe...
  • 14 篇 department of el...
  • 14 篇 center for autom...
  • 14 篇 school of comput...
  • 14 篇 school of comput...
  • 13 篇 univ maryland co...
  • 13 篇 microsoft resear...

作者

  • 39 篇 timofte radu
  • 28 篇 s.k. nayar
  • 25 篇 huang thomas s.
  • 24 篇 xiaoou tang
  • 22 篇 t. kanade
  • 20 篇 chellappa rama
  • 20 篇 t.s. huang
  • 19 篇 van gool luc
  • 19 篇 nayar shree k.
  • 19 篇 t. darrell
  • 17 篇 a.k. jain
  • 17 篇 a. zisserman
  • 17 篇 heung-yeung shum
  • 17 篇 jain anil k.
  • 17 篇 zisserman andrew
  • 16 篇 g. healey
  • 16 篇 torralba antonio
  • 16 篇 l. van gool
  • 15 篇 ying wu
  • 15 篇 m. shah

语言

  • 6,668 篇 英文
  • 8 篇 中文
  • 2 篇 其他
检索条件"任意字段=2003 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, CVPR 2003"
6678 条 记 录,以下是271-280 订阅
排序:
Model Level Ensemble for Facial Action Unit recognition at the 3rd ABAW Challenge
Model Level Ensemble for Facial Action Unit Recognition at t...
收藏 引用
ieee/CVF conference on computer vision and pattern recognition (cvpr)
作者: Jiang, Wenqiang Wu, Yannan Qiao, Fengsheng Meng, Liyu Deng, Yuanyuan Liu, Chuanhe Beijing Seek Truth Data Technol Co Ltd Beijing Peoples R China
In this paper, we present our latest work on Action Unit Detection, which is a part of the Affective Behavior Analysis in-the-wild (ABAW) 2022 Competition [15]. Our proposed network is based on the IResnet100 [6]. Fir... 详细信息
来源: 评论
Neural Image Recolorization for Creative Domains
Neural Image Recolorization for Creative Domains
收藏 引用
ieee/CVF conference on computer vision and pattern recognition (cvpr)
作者: Li, Boyi Belongie, Serge Lim, Ser-nam Davis, Abe Cornell Univ Ithaca NY 14853 USA Univ Copenhagen Copenhagen Denmark Meta AI New York NY USA
We present a self-supervised approach to recolorization of images from design-oriented domains. Our approach can recolor images based on image exemplars or target color palettes provided by a user. In contrast with pr... 详细信息
来源: 评论
On the Effect of Atmospheric Turbulence in the Feature Space of Deep Face recognition
On the Effect of Atmospheric Turbulence in the Feature Space...
收藏 引用
ieee/CVF conference on computer vision and pattern recognition (cvpr)
作者: Robbins, Wes Boult, Terrance Univ Colorado Colorado Springs CO 80907 USA
When captured over long distances, image quality is degraded by inconsistent refractive indexes in the atmosphere. This effect, known as Atmospheric Turbulence (AT), leads to lower performance for vision-based biometr... 详细信息
来源: 评论
Self-supervised vision Transformers for Land-cover Segmentation and Classification
Self-supervised Vision Transformers for Land-cover Segmentat...
收藏 引用
ieee/CVF conference on computer vision and pattern recognition (cvpr)
作者: Scheibenreif, Linus Hanna, Joelle Mommert, Michael Borth, Damian Univ St Gallen AIML Lab Sch Comp Sci Rosenbergstr 30 St Gallen Switzerland
Transformer models have recently approached or even surpassed the performance of ConvNets on computer vision tasks like classification and segmentation. To a large degree, these successes have been enabled by the use ... 详细信息
来源: 评论
Federated Learning-based Driver Activity recognition for Edge Devices
Federated Learning-based Driver Activity Recognition for Edg...
收藏 引用
ieee/CVF conference on computer vision and pattern recognition (cvpr)
作者: Doshi, Keval Yilmaz, Yasin Univ S Florida 4202 E Fowler Ave Tampa FL 33620 USA
Video action recognition has been an active area of research for the past several years. However, the majority of research is concentrated on recognizing a diverse range of activities in distinct environments. On the ... 详细信息
来源: 评论
When NAS Meets Trees: An Efficient Algorithm for Neural Architecture Search
When NAS Meets Trees: An Efficient Algorithm for Neural Arch...
收藏 引用
ieee/CVF conference on computer vision and pattern recognition (cvpr)
作者: Qian, Guocheng Zhang, Xuanyang Li, Guohao Zhao, Chen Chen, Yukang Zhang, Xiangyu Ghanem, Bernard Sun, Jian King Abdullah Univ Sci & Technol KAUST Thuwal Saudi Arabia MEGVII Technol Beijing Peoples R China Chinese Univ Hong Kong Hong Kong Peoples R China
The key challenge in neural architecture search (NAS) is designing how to explore wisely in the huge search space. We propose a new NAS method called TNAS (NAS with trees), which improves search efficiency by explorin... 详细信息
来源: 评论
Disentangled Loss for Low-Bit Quantization-Aware Training
Disentangled Loss for Low-Bit Quantization-Aware Training
收藏 引用
ieee/CVF conference on computer vision and pattern recognition (cvpr)
作者: Allenet, Thibault Briand, David Bichler, Olivier Sentieys, Olivier CEA LIST Saclay France Univ Rennes INRIA Rennes France
Quantization-Aware Training (QAT) has recently showed a lot of potential for low-bit settings in the context of image classification. Approaches based on QAT are using the Cross Entropy Loss function which is the refe... 详细信息
来源: 评论
Attenuating Catastrophic Forgetting by Joint Contrastive and Incremental Learning
Attenuating Catastrophic Forgetting by Joint Contrastive and...
收藏 引用
ieee/CVF conference on computer vision and pattern recognition (cvpr)
作者: Ferdinand, Quentin Clement, Benoit Oliveau, Quentin Le Chenadec, Gilles Papadakis, Panagiotis Naval Grp Res Cherbourg En Cotentin France ENSTA Bretagne Lab STICC UMR 6285 Brest France IMT Atlantique Lab STICC UMR 6285 Brest France
In class incremental learning, discriminative models are trained to classify images while adapting to new instances and classes incrementally. Training a model to adapt to new classes without total access to previous ... 详细信息
来源: 评论
À-la-carte Prompt Tuning (APT): Combining Distinct Data Via Composable Prompting
À-la-carte Prompt Tuning (APT): Combining Distinct Data Via...
收藏 引用
2023 ieee/CVF conference on computer vision and pattern recognition, cvpr 2023
作者: Bowman, Benjamin Achille, Alessandro Zancato, Luca Trager, Matthew Perera, Pramuditha Paolini, Giovanni Soatto, Stefano Aws Ai Labs United States Ucla United States
We introduce À-la-carte Prompt Tuning (APT), a transformer-based scheme to tune prompts on distinct data so that they can be arbitrarily composed at inference time. The individual prompts can be trained in isolat... 详细信息
来源: 评论
Edge-enhanced Feature Distillation Network for Efficient Super-Resolution
Edge-enhanced Feature Distillation Network for Efficient Sup...
收藏 引用
ieee/CVF conference on computer vision and pattern recognition (cvpr)
作者: Wang, Yan Nankai Univ Nankai Baidu Joint Lab Tianjin Peoples R China
With the recently massive development in convolution neural networks, numerous lightweight CNN-based image super-resolution methods have been proposed for practical deployments on edge devices. However, most existing ... 详细信息
来源: 评论