咨询与建议

限定检索结果

文献类型

  • 6,639 篇 会议
  • 34 篇 期刊文献
  • 5 册 图书

馆藏范围

  • 6,677 篇 电子文献
  • 1 种 纸本馆藏

日期分布

学科分类号

  • 3,950 篇 工学
    • 3,725 篇 计算机科学与技术...
    • 1,476 篇 软件工程
    • 807 篇 光学工程
    • 323 篇 信息与通信工程
    • 240 篇 控制科学与工程
    • 206 篇 机械工程
    • 169 篇 电气工程
    • 85 篇 生物医学工程(可授...
    • 73 篇 电子科学与技术(可...
    • 70 篇 生物工程
    • 65 篇 仪器科学与技术
    • 38 篇 建筑学
    • 36 篇 土木工程
    • 34 篇 力学(可授工学、理...
    • 32 篇 航空宇航科学与技...
    • 29 篇 安全科学与工程
    • 23 篇 化学工程与技术
    • 21 篇 材料科学与工程(可...
  • 1,498 篇 理学
    • 969 篇 物理学
    • 929 篇 数学
    • 369 篇 统计学(可授理学、...
    • 136 篇 生物学
    • 40 篇 系统科学
    • 26 篇 化学
  • 210 篇 医学
    • 210 篇 临床医学
    • 23 篇 基础医学(可授医学...
  • 165 篇 管理学
    • 123 篇 图书情报与档案管...
    • 44 篇 管理科学与工程(可...
    • 29 篇 工商管理
  • 21 篇 法学
    • 21 篇 社会学
  • 10 篇 农学
  • 9 篇 教育学
  • 6 篇 经济学
  • 2 篇 军事学
  • 1 篇 艺术学

主题

  • 2,364 篇 computer vision
  • 848 篇 pattern recognit...
  • 663 篇 cameras
  • 634 篇 computer science
  • 592 篇 face recognition
  • 558 篇 layout
  • 541 篇 conferences
  • 527 篇 image segmentati...
  • 514 篇 shape
  • 454 篇 object recogniti...
  • 453 篇 robustness
  • 394 篇 humans
  • 339 篇 feature extracti...
  • 324 篇 training
  • 305 篇 object detection
  • 263 篇 image recognitio...
  • 260 篇 application soft...
  • 249 篇 lighting
  • 248 篇 computational mo...
  • 238 篇 image reconstruc...

机构

  • 44 篇 microsoft resear...
  • 27 篇 department of co...
  • 21 篇 swiss fed inst t...
  • 21 篇 school of comput...
  • 21 篇 carnegie mellon ...
  • 20 篇 department of co...
  • 19 篇 swiss fed inst t...
  • 18 篇 department of co...
  • 17 篇 department of in...
  • 17 篇 the robotics ins...
  • 17 篇 institute of com...
  • 16 篇 univ sci & techn...
  • 16 篇 robotics institu...
  • 15 篇 tsinghua univ pe...
  • 14 篇 department of el...
  • 14 篇 center for autom...
  • 14 篇 school of comput...
  • 14 篇 school of comput...
  • 13 篇 univ maryland co...
  • 13 篇 microsoft resear...

作者

  • 39 篇 timofte radu
  • 28 篇 s.k. nayar
  • 25 篇 huang thomas s.
  • 24 篇 xiaoou tang
  • 22 篇 t. kanade
  • 20 篇 chellappa rama
  • 20 篇 t.s. huang
  • 19 篇 van gool luc
  • 19 篇 nayar shree k.
  • 19 篇 t. darrell
  • 17 篇 a.k. jain
  • 17 篇 a. zisserman
  • 17 篇 heung-yeung shum
  • 17 篇 jain anil k.
  • 17 篇 zisserman andrew
  • 16 篇 g. healey
  • 16 篇 torralba antonio
  • 16 篇 l. van gool
  • 15 篇 ying wu
  • 15 篇 m. shah

语言

  • 6,668 篇 英文
  • 8 篇 中文
  • 2 篇 其他
检索条件"任意字段=2003 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, CVPR 2003"
6678 条 记 录,以下是651-660 订阅
排序:
Self Texture Transfer Networks for Low Bitrate Image Compression
Self Texture Transfer Networks for Low Bitrate Image Compres...
收藏 引用
ieee/CVF conference on computer vision and pattern recognition (cvpr)
作者: Iwai, Shoma Miyazaki, Tomo Sugaya, Yoshihiro Omachi, Shinichiro Tohoku Univ Grad Sch Engn Dept Commun Sendai Miyagi Japan
Lossy image compression causes a loss of texture, especially at low bitrate. To mitigate this problem, we propose a novel image compression method that utilizes a reference-based image super-resolution model. We use t... 详细信息
来源: 评论
ObjectGraphs: Using Objects and a Graph Convolutional Network for the Bottom-up recognition and Explanation of Events in Video
ObjectGraphs: Using Objects and a Graph Convolutional Networ...
收藏 引用
ieee/CVF conference on computer vision and pattern recognition (cvpr)
作者: Gkalelis, Nikolaos Goulas, Andreas Galanopoulos, Damianos Mezaris, Vasileios CERTH ITI 6th Km Charilaou Thermi RdPOB 60361 Thessaloniki Greece
In this paper a novel bottom-up video event recognition approach is proposed, ObjectGraphs, which utilizes a rich frame representation and the relations between objects within each frame. Following the application of ... 详细信息
来源: 评论
Shadow-Mapping for Unsupervised Neural Causal Discovery
Shadow-Mapping for Unsupervised Neural Causal Discovery
收藏 引用
ieee/CVF conference on computer vision and pattern recognition (cvpr)
作者: Vowels, Matthew J. Camgoz, Necati Cihan Bowden, Richard Univ Surrey Ctr Vis Speech & Signal Proc Guildford Surrey England
An important goal across most scientific fields is the discovery of causal structures underling a set of observations. Unfortunately, causal discovery methods which are based on correlation or mutual information can o... 详细信息
来源: 评论
Modeling Fashion Compatibility with Explanation by using Bidirectional LSTM
Modeling Fashion Compatibility with Explanation by using Bid...
收藏 引用
ieee/CVF conference on computer vision and pattern recognition (cvpr)
作者: Pang Kaicheng Zou Xingxing Wong, Wai Keung Hong Kong Polytech Univ Inst Text & Clothing Hong Kong Peoples R China Lab Artificial Intelligence Design Hong Kong Peoples R China
The goal of this paper is to model the fashion compatibility of an outfit and provide the explanations. We first extract features of all attributes of all items via convolutional neural networks, and then train the bi... 详细信息
来源: 评论
Temporal Query Networks for Fine-grained Video Understanding
Temporal Query Networks for Fine-grained Video Understanding
收藏 引用
ieee/CVF conference on computer vision and pattern recognition (cvpr)
作者: Zhang, Chuhan Gupta, Ankush Zisserman, Andrew Univ Oxford Oxford England DeepMind London England
Our objective in this work is fine-grained classification of actions in untrimmed videos, where the actions may be temporally extended or may span only a few frames of the video. We cast this into a query-response mec... 详细信息
来源: 评论
Feedback control of event cameras
Feedback control of event cameras
收藏 引用
ieee/CVF conference on computer vision and pattern recognition (cvpr)
作者: Delbruck, Tobi Graca, Rui Paluch, Marcin UZH ETH Zurich Inst Neuroinformat Zurich Switzerland
Dynamic vision sensor event cameras produce a variable data rate stream of brightness change events. Event production at the pixel level is controlled by threshold, bandwidth, and refractory period bias current parame... 详细信息
来源: 评论
Fuse-PN: A Novel Architecture for Anomaly pattern Segmentation in Aerial Agricultural Images
Fuse-PN: A Novel Architecture for Anomaly Pattern Segmentati...
收藏 引用
ieee/CVF conference on computer vision and pattern recognition (cvpr)
作者: Innani, Shubham Dutande, Prasad Baheti, Bhakti Talbar, Sanjay Baid, Ujjwal SGGS Inst Engn & Technol Ctr Excellence Signal & Image Proc Nanded 431606 India
Deep learning and pattern recognition in smart farming has seen rapid growth as a building bridge between crop science and computer vision. One of the important application is anomaly segmentation in agriculture like ... 详细信息
来源: 评论
Evaluating the Immediate Applicability of Pose Estimation for Sign Language recognition
Evaluating the Immediate Applicability of Pose Estimation fo...
收藏 引用
ieee/CVF conference on computer vision and pattern recognition (cvpr)
作者: Moryossef, Amit Tsochantaridis, Ioannis Dinn, Joe Camgoez, Necati Cihan Bowden, Richard Jiang, Tao Rios, Annette Muller, Mathias Ebling, Sarah Bar Ilan Univ Ramat Gan Israel Google Mountain View CA 94043 USA Univ Surrey Guildford Surrey England Univ Zurich Zurich Switzerland
Sign languages are visual languages produced by the movement of the hands, face, and body. In this paper, we evaluate representations based on skeleton poses, as these are explainable, person-independent, privacy-pres... 详细信息
来源: 评论
NTIRE 2021 Multi-modal Aerial View Object Classification Challenge
NTIRE 2021 Multi-modal Aerial View Object Classification Cha...
收藏 引用
ieee/CVF conference on computer vision and pattern recognition (cvpr)
作者: Liu, Jerrick Inkawhich, Nathan Nina, Oliver Timofte, Radu Duan, Yuru Li, Gongzhe Geng, Xueli Cai, Huanqia Air Force Res Lab Albuquerque NM 87117 USA Univ Illinois Urbana IL 61801 USA Duke Univ Durham NC 27706 USA Swiss Fed Inst Technol Comp Vis Lab Zurich Switzerland Northwestern Polytech Univ Changan Campus Xian Shaanxi Peoples R China Beihang Univ Beijing Peoples R China Xidian Univ Key Lab Intelligent Percept & Image Understanding Xian Peoples R China Dengzhuang South Rd Beijing Peoples R China
In this paper, we introduce the first Challenge on Multi-modal Aerial View Object Classification (MAVOC) in conjunction with the NTIRE 2021 workshop at cvpr. This challenge is composed of two different tracks using EO... 详细信息
来源: 评论
Sample-free white-box out-of-distribution detection for deep learning
Sample-free white-box out-of-distribution detection for deep...
收藏 引用
ieee/CVF conference on computer vision and pattern recognition (cvpr)
作者: Begon, Jean-Michel Geurts, Pierre Univ Liege Liege Belgium
Being able to detect irrelevant test examples with respect to deployed deep learning models is paramount to properly and safely using them. In this paper, we address the problem of rejecting such out-of-distribution (... 详细信息
来源: 评论