咨询与建议

限定检索结果

文献类型

  • 6,639 篇 会议
  • 34 篇 期刊文献
  • 5 册 图书

馆藏范围

  • 6,677 篇 电子文献
  • 1 种 纸本馆藏

日期分布

学科分类号

  • 3,950 篇 工学
    • 3,725 篇 计算机科学与技术...
    • 1,476 篇 软件工程
    • 807 篇 光学工程
    • 323 篇 信息与通信工程
    • 240 篇 控制科学与工程
    • 206 篇 机械工程
    • 169 篇 电气工程
    • 85 篇 生物医学工程(可授...
    • 73 篇 电子科学与技术(可...
    • 70 篇 生物工程
    • 65 篇 仪器科学与技术
    • 38 篇 建筑学
    • 36 篇 土木工程
    • 34 篇 力学(可授工学、理...
    • 32 篇 航空宇航科学与技...
    • 29 篇 安全科学与工程
    • 23 篇 化学工程与技术
    • 21 篇 材料科学与工程(可...
  • 1,498 篇 理学
    • 969 篇 物理学
    • 929 篇 数学
    • 369 篇 统计学(可授理学、...
    • 136 篇 生物学
    • 40 篇 系统科学
    • 26 篇 化学
  • 210 篇 医学
    • 210 篇 临床医学
    • 23 篇 基础医学(可授医学...
  • 165 篇 管理学
    • 123 篇 图书情报与档案管...
    • 44 篇 管理科学与工程(可...
    • 29 篇 工商管理
  • 21 篇 法学
    • 21 篇 社会学
  • 10 篇 农学
  • 9 篇 教育学
  • 6 篇 经济学
  • 2 篇 军事学
  • 1 篇 艺术学

主题

  • 2,364 篇 computer vision
  • 848 篇 pattern recognit...
  • 663 篇 cameras
  • 634 篇 computer science
  • 592 篇 face recognition
  • 558 篇 layout
  • 541 篇 conferences
  • 527 篇 image segmentati...
  • 514 篇 shape
  • 454 篇 object recogniti...
  • 453 篇 robustness
  • 394 篇 humans
  • 339 篇 feature extracti...
  • 324 篇 training
  • 305 篇 object detection
  • 263 篇 image recognitio...
  • 260 篇 application soft...
  • 249 篇 lighting
  • 248 篇 computational mo...
  • 238 篇 image reconstruc...

机构

  • 44 篇 microsoft resear...
  • 27 篇 department of co...
  • 21 篇 swiss fed inst t...
  • 21 篇 school of comput...
  • 21 篇 carnegie mellon ...
  • 20 篇 department of co...
  • 19 篇 swiss fed inst t...
  • 18 篇 department of co...
  • 17 篇 department of in...
  • 17 篇 the robotics ins...
  • 17 篇 institute of com...
  • 16 篇 univ sci & techn...
  • 16 篇 robotics institu...
  • 15 篇 tsinghua univ pe...
  • 14 篇 department of el...
  • 14 篇 center for autom...
  • 14 篇 school of comput...
  • 14 篇 school of comput...
  • 13 篇 univ maryland co...
  • 13 篇 microsoft resear...

作者

  • 39 篇 timofte radu
  • 28 篇 s.k. nayar
  • 25 篇 huang thomas s.
  • 24 篇 xiaoou tang
  • 22 篇 t. kanade
  • 20 篇 chellappa rama
  • 20 篇 t.s. huang
  • 19 篇 van gool luc
  • 19 篇 nayar shree k.
  • 19 篇 t. darrell
  • 17 篇 a.k. jain
  • 17 篇 a. zisserman
  • 17 篇 heung-yeung shum
  • 17 篇 jain anil k.
  • 17 篇 zisserman andrew
  • 16 篇 g. healey
  • 16 篇 torralba antonio
  • 16 篇 l. van gool
  • 15 篇 ying wu
  • 15 篇 m. shah

语言

  • 6,668 篇 英文
  • 8 篇 中文
  • 2 篇 其他
检索条件"任意字段=2003 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, CVPR 2003"
6678 条 记 录,以下是731-740 订阅
排序:
Improved Noise2Noise Denoising with Limited Data
Improved Noise2Noise Denoising with Limited Data
收藏 引用
ieee/CVF conference on computer vision and pattern recognition (cvpr)
作者: Calvarons, Adria Font Tech Univ Munich Munich Germany
Deep learning methods have proven to be very effective for the task of image denoising even when clean reference images are not available. In particular, Noise2Noise, which requires pairs of noisy images during the tr... 详细信息
来源: 评论
Adaptive Spatial-Temporal Fusion of Multi-Objective Networks for Compressed Video Perceptual Enhancement
Adaptive Spatial-Temporal Fusion of Multi-Objective Networks...
收藏 引用
ieee/CVF conference on computer vision and pattern recognition (cvpr)
作者: Zheng, He Li, Xin Liu, Fanglong Jiang, Lielin Zhang, Qi Li, Fu Dang, Qingqing He, Dongliang Baidu Inc Dept Comp Vis Technol VIS Bldg 2Baidu Sci Pk Beijing Peoples R China
Perceptual quality enhancement of heavily compressed videos is a difficult, unsolved problem because there still not exists a suitable perceptual similarity loss function between two video pairs. Motivated by the fact... 详细信息
来源: 评论
X-MAN: Explaining multiple sources of anomalies in video
X-MAN: Explaining multiple sources of anomalies in video
收藏 引用
ieee/CVF conference on computer vision and pattern recognition (cvpr)
作者: Szymanowicz, Stanislaw Charles, James Cipolla, Roberto Univ Cambridge Cambridge England
Our objective is to detect anomalies in video while also automatically explaining the reason behind the detector's response. In a practical sense, explainability is crucial for this task as the required response t... 详细信息
来源: 评论
Two-stage Network For Single Image Super-Resolution
Two-stage Network For Single Image Super-Resolution
收藏 引用
ieee/CVF conference on computer vision and pattern recognition (cvpr)
作者: Han, Yuzhuo Du, Xiaobiao Yang, Zhi Dalian Univ Technol Dalian Peoples R China Jilin Univ Zhuhai Coll Zhuhai Peoples R China Dibaocheng Shanghai Med Imaging Technol Co Ltd Shanghai Peoples R China
The task of single-image super-resolution (SISR) is a highly inverse problem because it is very challenging to reconstruct rich details from blurred images. Most previous super-resolution (SR) methods based on the con... 详细信息
来源: 评论
ADNet: Attention-guided Deformable Convolutional Network for High Dynamic Range Imaging
ADNet: Attention-guided Deformable Convolutional Network for...
收藏 引用
ieee/CVF conference on computer vision and pattern recognition (cvpr)
作者: Liu, Zhen Lin, Wenjie Li, Xinpeng Rao, Qing Jiang, Ting Han, Mingyan Fan, Haoqiang Sun, Jian Liu, Shuaicheng Megvii Technol Beijing Peoples R China Sichuan Univ Chengdu Peoples R China Univ Elect Sci & Technol China Chengdu Peoples R China
In this paper, we present an attention-guided deformable convolutional network for hand-held multi frame high dynamic range (HDR) imaging, namely ADNet. This problem comprises two intractable challenges of how to hand... 详细信息
来源: 评论
Deep Fusion of Appearance and Frame Differencing for Motion Segmentation
Deep Fusion of Appearance and Frame Differencing for Motion ...
收藏 引用
ieee/CVF conference on computer vision and pattern recognition (cvpr)
作者: Ellenfeld, Marc Moosbauer, Sebastian Cardenes, Ruben Klauck, Ulrich Teutsch, Michael Hensoldt Optron GmbH Oberkochen Germany Hensoldt Analyt GmbH Oberkochen Germany Aalen Univ Appl Sci Aalen Germany Univ Western Cape Cape Town South Africa
Motion segmentation is a technique to detect and localize class-agnostic motion in videos. This motion is assumed to be relative to a stationary background and usually originates from objects such as vehicles or human... 详细信息
来源: 评论
A Simple Baseline for Fast and Accurate Depth Estimation on Mobile Devices
A Simple Baseline for Fast and Accurate Depth Estimation on ...
收藏 引用
ieee/CVF conference on computer vision and pattern recognition (cvpr)
作者: Zhang, Ziyu Wang, Yicheng Huang, Zilong Luo, Guozhong Yu, Gang Fu, Bin Tencent GY Lab Shenzhen Peoples R China
In this paper, we propose a simple but effective encoder-decoder based network for fast and accurate depth estimation on mobile devices. Unlike other depth estimation methods using heavy context modeling modules, the ... 详细信息
来源: 评论
Renofeation: A Simple Transfer Learning Method for Improved Adversarial Robustness
Renofeation: A Simple Transfer Learning Method for Improved ...
收藏 引用
ieee/CVF conference on computer vision and pattern recognition (cvpr)
作者: Chin, Ting-Wu Zhang, Cha Marculescu, Diana Carnegie Mellon Univ Pittsburgh PA 15213 USA Microsoft Cloud & AI Redmond WA USA Univ Texas Austin Austin TX 78712 USA
Fine-tuning through knowledge transfer from a pre-trained model on a large-scale dataset is a widely spread approach to effectively build models on small-scale datasets. In this work, we show that a recent adversarial... 详细信息
来源: 评论
Long-Tailed recognition of SAR Aerial View Objects by Cascading and Paralleling Experts
Long-Tailed Recognition of SAR Aerial View Objects by Cascad...
收藏 引用
ieee/CVF conference on computer vision and pattern recognition (cvpr)
作者: Yang, Cheng-Yen Hsu, Hung-Min Cai, Jiarui Hwang, Jenq-Neng Univ Washington Dept Elect & Comp Engn Seattle WA 98195 USA
Aerial View Object Classification (AVOC) has started to adopt deep learning approaches with significant success in recent years, but limited to optical data. On the other hand, Synthetic Aperture Radar (SAR) has wild ... 详细信息
来源: 评论
BGT-Net: Bidirectional GRU Transformer Network for Scene Graph Generation
BGT-Net: Bidirectional GRU Transformer Network for Scene Gra...
收藏 引用
ieee/CVF conference on computer vision and pattern recognition (cvpr)
作者: Dhingra, Naina Ritter, Florian Kunz, Andreas Swiss Fed Inst Technol Innovat Ctr Virtual Real Zurich Switzerland
Scene graphs are nodes and edges consisting of objects and object-object relationships, respectively. Scene graph generation (SGG) aims to identify the objects and their relationships. We propose a bidirectional GRU (... 详细信息
来源: 评论