咨询与建议

限定检索结果

文献类型

  • 6,639 篇 会议
  • 34 篇 期刊文献
  • 5 册 图书

馆藏范围

  • 6,677 篇 电子文献
  • 1 种 纸本馆藏

日期分布

学科分类号

  • 3,950 篇 工学
    • 3,725 篇 计算机科学与技术...
    • 1,476 篇 软件工程
    • 807 篇 光学工程
    • 323 篇 信息与通信工程
    • 240 篇 控制科学与工程
    • 206 篇 机械工程
    • 169 篇 电气工程
    • 85 篇 生物医学工程(可授...
    • 73 篇 电子科学与技术(可...
    • 70 篇 生物工程
    • 65 篇 仪器科学与技术
    • 38 篇 建筑学
    • 36 篇 土木工程
    • 34 篇 力学(可授工学、理...
    • 32 篇 航空宇航科学与技...
    • 29 篇 安全科学与工程
    • 23 篇 化学工程与技术
    • 21 篇 材料科学与工程(可...
  • 1,498 篇 理学
    • 969 篇 物理学
    • 929 篇 数学
    • 369 篇 统计学(可授理学、...
    • 136 篇 生物学
    • 40 篇 系统科学
    • 26 篇 化学
  • 210 篇 医学
    • 210 篇 临床医学
    • 23 篇 基础医学(可授医学...
  • 165 篇 管理学
    • 123 篇 图书情报与档案管...
    • 44 篇 管理科学与工程(可...
    • 29 篇 工商管理
  • 21 篇 法学
    • 21 篇 社会学
  • 10 篇 农学
  • 9 篇 教育学
  • 6 篇 经济学
  • 2 篇 军事学
  • 1 篇 艺术学

主题

  • 2,364 篇 computer vision
  • 848 篇 pattern recognit...
  • 663 篇 cameras
  • 634 篇 computer science
  • 592 篇 face recognition
  • 558 篇 layout
  • 541 篇 conferences
  • 527 篇 image segmentati...
  • 514 篇 shape
  • 454 篇 object recogniti...
  • 453 篇 robustness
  • 394 篇 humans
  • 339 篇 feature extracti...
  • 324 篇 training
  • 305 篇 object detection
  • 263 篇 image recognitio...
  • 260 篇 application soft...
  • 249 篇 lighting
  • 248 篇 computational mo...
  • 238 篇 image reconstruc...

机构

  • 44 篇 microsoft resear...
  • 27 篇 department of co...
  • 21 篇 swiss fed inst t...
  • 21 篇 school of comput...
  • 21 篇 carnegie mellon ...
  • 20 篇 department of co...
  • 19 篇 swiss fed inst t...
  • 18 篇 department of co...
  • 17 篇 department of in...
  • 17 篇 the robotics ins...
  • 17 篇 institute of com...
  • 16 篇 univ sci & techn...
  • 16 篇 robotics institu...
  • 15 篇 tsinghua univ pe...
  • 14 篇 department of el...
  • 14 篇 center for autom...
  • 14 篇 school of comput...
  • 14 篇 school of comput...
  • 13 篇 univ maryland co...
  • 13 篇 microsoft resear...

作者

  • 39 篇 timofte radu
  • 28 篇 s.k. nayar
  • 25 篇 huang thomas s.
  • 24 篇 xiaoou tang
  • 22 篇 t. kanade
  • 20 篇 chellappa rama
  • 20 篇 t.s. huang
  • 19 篇 van gool luc
  • 19 篇 nayar shree k.
  • 19 篇 t. darrell
  • 17 篇 a.k. jain
  • 17 篇 a. zisserman
  • 17 篇 heung-yeung shum
  • 17 篇 jain anil k.
  • 17 篇 zisserman andrew
  • 16 篇 g. healey
  • 16 篇 torralba antonio
  • 16 篇 l. van gool
  • 15 篇 ying wu
  • 15 篇 m. shah

语言

  • 6,668 篇 英文
  • 8 篇 中文
  • 2 篇 其他
检索条件"任意字段=2003 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, CVPR 2003"
6678 条 记 录,以下是751-760 订阅
排序:
Perceptual Image Quality Assessment with Transformers
Perceptual Image Quality Assessment with Transformers
收藏 引用
ieee/CVF conference on computer vision and pattern recognition (cvpr)
作者: Cheon, Manri Yoon, Sung-Jun Kang, Byungyeon Lee, Junwoo LG Elect Seoul South Korea
In this paper, we propose an image quality transformer (IQT) that successfully applies a transformer architecture to a perceptual full-reference image quality assessment (IQA) task. Perceptual representation becomes m... 详细信息
来源: 评论
NTIRE 2022 Challenge on Stereo Image Super-Resolution: Methods and Results
NTIRE 2022 Challenge on Stereo Image Super-Resolution: Metho...
收藏 引用
ieee/CVF conference on computer vision and pattern recognition (cvpr)
作者: Wang, Longguang Guo, Yulan Wang, Yingqian Li, Juncheng Gu, Shuhang Timofte, Radu Chen, Liangyu Chu, Xiaojie Yu, Wenqing Jin, Kai Wei, Zeqiang Guo, Sha Yang, Angulia Zhou, Xiuzhuang Guo, Guodong Dai, Bin Peng, Feiyue Xiao, Huaxin Yan, Shen Liu, Yuxiang Cai, Hanxiao Cao, Pu Nie, Yang Yang, Lu Song, Qing Hu, Xiaotao Xu, Jun Xu, Mai Jing, Junpeng Deng, Xin Xing, Qunliang Qiao, Minglang Guan, Zhenyu Guo, Wenlong Peng, Chenxu Chen, Zan Chen, Junyang Li, Hao Chen, Junbin Li, Weijie Yang, Zhijing Li, Gen Li, Aijin Sun, Lei Zhang, Dafeng Liu, Shizhuo Zhang, Jiangtao Qu, Yanyun Yang, Hao-Hsiang Huang, Zhi-Kai Chen, Wei-Ting Chang, Hua-En Kuo, Sy-Yen Liang, Qiaohui Lin, Jianxin Wang, Yijun Yin, Lianying Zhang, Rongju Zhao, Wei Xiao, Peng Xu, Rongjian Zhang, Zhilu Zuo, Wangmeng Guo, Hansheng Gao, Guangwei Zeng, Tieyong Pi, Huicheng Zhang, Shunli Kim, Joohyeok Kim, HyeonA Park, Eunpil Sim, Jae-Young Zhai, Jucai Zeng, Pengcheng Liu, Yang Ma, Chihao Huang, Yulin Chen, Junying Natl Univ Defense Technol Changsha Peoples R China Chinese Univ Hong Kong Hong Kong Peoples R China Univ Sydney Sydney NSW 2006 Australia Univ Wurzburg Wurzburg Germany Swiss Fed Inst Technol Zurich Switzerland MEGVII Technol Beijing Peoples R China Peking Univ Beijing Peoples R China Bigo Technol Pte Ltd Singapore Singapore Beijing Univ Posts & Telecommun Smart Healthcare Innovat Lab Beijing Peoples R China Beijing Univ Posts & Telecommun Sch Artificial Intelligence Beijing Peoples R China Baidu Res Inst Deep Learning Beijing Peoples R China Natl Univ Defense Technol Coll Syst Engn Changsha Peoples R China Natl Univ Defense Technol Coll Liberal Arts & Sci Changsha Peoples R China Beijing Univ Posts & Telecommun Pattern Recognit & Intelligent Vis Lab Beijing Peoples R China Nankai Univ Coll Comp Sci Tianjin Peoples R China Nankai Univ Sch Stat & Data Sci Tianjin Peoples R China Beihang Univ Beijing Peoples R China Zhejiang Univ Technol Hangzhou Zhejiang Peoples R China Guangdong Univ Technol Guangzhou Guangdong Peoples R China Tencent OVBU Wuhu Peoples R China SRC B Beijing Peoples R China Xiamen Univ Xiamen Peoples R China Natl Taiwan Univ Dept Elect Engn Taipei Taiwan Natl Taiwan Univ Grad Inst Elect Engn Taipei Taiwan Hunan Univ Coll Comp Sci & Elect Engn Changsha Hunan Peoples R China Harbin Inst Technol Harbin Peoples R China Chinese Univ Hong Kong Hong Kong Peoples R China Nanjing Univ Posts & Telecommun Nanjing Peoples R China Ulsan Natl Inst Sci & Technol Dept Elect Engn Ulsan South Korea Ulsan Natl Inst Sci & Technol Grad Sch Artificial Intelligence Ulsan South Korea Beijing Jiaotong Univ Beijing Peoples R China City Univ Hong Kong Hong Kong Peoples R China South China Univ Technol Guangzhou Guangdong Peoples R China
In this paper, we summarize the 1st NTIRE challenge on stereo image super-resolution (restoration of rich details in a pair of low-resolution stereo images) with a focus on new solutions and results. This challenge ha... 详细信息
来源: 评论
APES: Audiovisual Person Search in Untrimmed Video
APES: Audiovisual Person Search in Untrimmed Video
收藏 引用
ieee/CVF conference on computer vision and pattern recognition (cvpr)
作者: Alcazar, Juan Leon Heilbron, Fabian Caba Mai, Long Perazzi, Federico Lee, Joon-Young Arbelaez, Pablo Ghanem, Bernard Univ Los Andes Bogota Colombia Adobe Res San Jose CA USA King Abdullah Univ Sci & Technol Thuwal Saudi Arabia
Humans are arguably one of the most important subjects in video streams, many real-world applications such as video summarization or video editing workflows often require the automatic search and retrieval of a person... 详细信息
来源: 评论
Leveraging Multi scale Backbone with Multilevel supervision for Thermal Image Super Resolution
Leveraging Multi scale Backbone with Multilevel supervision ...
收藏 引用
ieee/CVF conference on computer vision and pattern recognition (cvpr)
作者: Nathan, Sabari Kansal, Priya Couger Inc Shibuya Ku Tokyo Japan
This paper proposes an attention-based multi-level model with a multi-scale backbone for thermal image super-resolution. The model leverages the multi-scale backbone as well. The thermal image dataset is provided by P... 详细信息
来源: 评论
CoCon: Cooperative-Contrastive Learning
CoCon: Cooperative-Contrastive Learning
收藏 引用
ieee/CVF conference on computer vision and pattern recognition (cvpr)
作者: Rai, Nishant Adeli, Ehsan Lee, Kuan-Hui Gaidon, Adrien Niebles, Juan Carlos Stanford Univ Stanford CA 94305 USA Toyota Res Inst Toyota Japan
Labeling videos at scale is impractical. Consequently, self-supervised visual representation learning is key for efficient video analysis. Recent success in learning image representations suggest contrastive learning ... 详细信息
来源: 评论
GOO: A Dataset for Gaze Object Prediction in Retail Environments
GOO: A Dataset for Gaze Object Prediction in Retail Environm...
收藏 引用
ieee/CVF conference on computer vision and pattern recognition (cvpr)
作者: Tomas, Henri Reyes, Marcus Dionido, Raimarc Ty, Mark Mirando, Jonric Casimiro, Joel Atienza, Rowel Guinto, Richard Univ Philippines Quezon City Philippines Samsung R&D Inst Philippines Taguig Philippines
One of the most fundamental and information-laden actions humans do is to look at objects. However, a survey of current works reveals that existing gaze-related datasets annotate only the pixel being looked at, and no... 详细信息
来源: 评论
Skeleton Aware Multi-modal Sign Language recognition
Skeleton Aware Multi-modal Sign Language Recognition
收藏 引用
ieee/CVF conference on computer vision and pattern recognition (cvpr)
作者: Jiang, Songyao Sun, Bin Wang, Lichen Bai, Yue Li, Kunpeng Fu, Yun Northeastern Univ Boston MA 02115 USA
Sign language is commonly used by deaf or speech impaired people to communicate but requires significant effort to master. Sign Language recognition (SLR) aims to bridge the gap between sign language users and others ... 详细信息
来源: 评论
SrvfNet: A Generative Network for Unsupervised Multiple Diffeomorphic Functional Alignment
SrvfNet: A Generative Network for Unsupervised Multiple Diff...
收藏 引用
ieee/CVF conference on computer vision and pattern recognition (cvpr)
作者: Nunez, Elvis Lizarraga, Andrew Joshi, Shantanu H. Univ Calif Los Angeles Dept Elect & Comp Engn Los Angeles CA 90024 USA Univ Calif Los Angeles Dept Bioengn Los Angeles CA 90024 USA Univ Calif Los Angeles Dept Neurol Ahmanson Lovelace Brain Mapping Ctr Los Angeles CA 90024 USA
We present SrvfNet, a generative deep learning framework for the joint multiple alignment of large collections of functional data comprising square-root velocity functions (SRVF) to their templates. Our proposed frame... 详细信息
来源: 评论
HINet: Half Instance Normalization Network for Image Restoration
HINet: Half Instance Normalization Network for Image Restora...
收藏 引用
ieee/CVF conference on computer vision and pattern recognition (cvpr)
作者: Chen, Liangyu Lu, Xin Zhang, Jie Chu, Xiaojie Chen, Chengpeng MEGVII Technol Beijing Peoples R China Fudan Univ Shanghai Peoples R China Peking Univ Beijing Peoples R China
In this paper, we explore the role of Instance Normalization in low-level vision tasks. Specifically, we present a novel block: Half Instance Normalization Block (HIN Block), to boost the performance of image restorat... 详细信息
来源: 评论
Multi-Modal Temporal Convolutional Network for Anticipating Actions in Egocentric Videos
Multi-Modal Temporal Convolutional Network for Anticipating ...
收藏 引用
ieee/CVF conference on computer vision and pattern recognition (cvpr)
作者: Zatsarynna, Olga Abu Farha, Yazan Gall, Juergen Univ Bonn Bonn Germany
Anticipating human actions is an important task that needs to be addressed for the development of reliable intelligent agents, such as self-driving cars or robot assistants. While the ability to make future prediction... 详细信息
来源: 评论