While real-time garbage collection has achieved worst-case latencies on the order of a millisecond, this technology is approaching its practical limits. For tasks requiring extremely low latency, and especially period...
详细信息
Many applications written in garbage collected languages have large dynamic working sets and poor data locality. We present a new system for continuously improving program data locality at run time with low overhead. ...
详细信息
Static analysis of programs in weakly typed languages such as C and C++ is generally not sound because of possible memory errors due to dangling pointer references, uninitialized pointers, and array bounds overflow. W...
详细信息
Garbage collection has proven benefits, including fewer memory-related errors and reduced programmer effort. Garbage collection, however, trades space for time. It reclaims memory only when it is invoked: invoking it ...
详细信息
A number of hardware and software techniques have been proposed to detect dynamic program behaviors that may indicate a bug in a program. Because these techniques suffer from high overheads they are useful in finding ...
详细信息
Concepts are an essential language feature for generic programming in the large. Concepts allow for succinct expression of constraints on type parameters of generic algorithms, enable systematic organization of proble...
详细信息
Concepts are an essential language feature for generic programming in the large. Concepts allow for succinct expression of constraints on type parameters of generic algorithms, enable systematic organization of problem domain abstractions, and make generic algorithms easier to use. In this paper we present the design of a type system and semantics for concepts that is suitable for non-type-inferencing languages. Our design shares much in common with the type classes of Haskell, though our primary influence is from best practices in the C++ community, where concepts are used to document type requirements for templates in generic libraries. Concepts include a novel combination of associated types and same-type constraints that do not appear in type classes, but that are similar to nested types and type sharing in ML.
We propose an aspect-oriented programming (AOP) language called Aspectual Caml based on a strongly-typed functional language Objective Caml with two AOP mechanisms similar to those in AspectJ language. This paper desc...
详细信息
We propose an aspect-oriented programming (AOP) language called Aspectual Caml based on a strongly-typed functional language Objective Caml with two AOP mechanisms similar to those in AspectJ language. This paper describes the design and implementation issues of those AOP mechanisms that give us insights into the interaction between AOP features and common features in strongly-typed functional languages such as type inference, polymorphic types and curried functions. We implemented a prototype compiler of the language and used the language for separating crosscutting concerns in application programs, including for separating descriptions of a type system from compiler descriptions.
PADS is a declarative data description language that allows data analysts to describe both the physical layout of ad hoc data sources and semantic properties of that data. From such descriptions, the PADS compiler gen...
详细信息
PADS is a declarative data description language that allows data analysts to describe both the physical layout of ad hoc data sources and semantic properties of that data. From such descriptions, the PADS compiler generates libraries and tools for manipulating the data, including parsing routines, statistical profiling tools, translation programs to produce well-behaved formats such as XML or those required for loading relational databases, and tools for running XQueries over raw PADS data sources. The descriptions are concise enough to serve as "living" documentation while flexible enough to describe most of the ASCII, binary, and Cobol formats that we have seen in practice. The generated parsing library provides for robust, application-specific error handling.
Concepts are an essential language feature for generic programming in the large. Concepts allow for succinct expression of constraints on type parameters of generic algorithms, enable systematic organization of proble...
详细信息
Concepts are an essential language feature for generic programming in the large. Concepts allow for succinct expression of constraints on type parameters of generic algorithms, enable systematic organization of problem domain abstractions, and make generic algorithms easier to use. In this paper we present the design of a type system and semantics for concepts that is suitable for non-type-inferencing languages. Our design shares much in common with the type classes of Haskell, though our primary influence is from best practices in the C++ community, where concepts are used to document type requirements for templates in generic libraries. Concepts include a novel combination of associated types and same-type constraints that do not appear in type classes, but that are similar to nested types and type sharing in ML.
AspectJ, an aspect-oriented extension of Java, is becoming increasingly popular. However, not much work has been directed at optimising compilers for AspectJ. Optimising AOP languages provides many new and interesting...
详细信息
AspectJ, an aspect-oriented extension of Java, is becoming increasingly popular. However, not much work has been directed at optimising compilers for AspectJ. Optimising AOP languages provides many new and interesting challenges for compiler writers, and this paper identifies and addresses three such challenges. First, compiling around advice efficiently is particularly challenging. We provide a new code generation strategy for around advice, which (unlike previous implementations) both avoids the use of excessive inlining and the use of closures. We show it leads to more compact code, and can also improve run-time performance. Second, woven code sometimes includes run-time tests to determine whether advice should execute. One important case is the cflow pointcut which uses information about the dynamic calling context. Previous techniques for cflow were very costly in terms of both time and space. We present new techniques to minimise or eliminate the overhead of cflow using both intra- and inter-procedural analyses. Third, we have addressed the general problem of how to structure an optimising compiler so that traditional analyses can be easily adapted to the AOP setting. We have implemented all of the techniques in this paper in abc, our AspectBench Compiler for AspectJ, and we demonstrate significant speedups with empirical results. Some of our techniques have already been integrated into the production AspectJ compiler, ajc 1.2.1. Copyright 2005acm.
暂无评论