咨询与建议

限定检索结果

文献类型

  • 6,506 篇 会议
  • 29 篇 期刊文献
  • 10 册 图书

馆藏范围

  • 6,544 篇 电子文献
  • 1 种 纸本馆藏

日期分布

学科分类号

  • 3,906 篇 工学
    • 3,683 篇 计算机科学与技术...
    • 1,504 篇 软件工程
    • 802 篇 光学工程
    • 359 篇 信息与通信工程
    • 256 篇 控制科学与工程
    • 204 篇 机械工程
    • 176 篇 电气工程
    • 95 篇 生物医学工程(可授...
    • 79 篇 生物工程
    • 77 篇 电子科学与技术(可...
    • 61 篇 仪器科学与技术
    • 38 篇 建筑学
    • 36 篇 力学(可授工学、理...
    • 34 篇 土木工程
    • 31 篇 航空宇航科学与技...
    • 31 篇 安全科学与工程
    • 22 篇 材料科学与工程(可...
    • 22 篇 交通运输工程
  • 1,537 篇 理学
    • 980 篇 物理学
    • 960 篇 数学
    • 376 篇 统计学(可授理学、...
    • 152 篇 生物学
    • 34 篇 系统科学
    • 24 篇 化学
  • 168 篇 管理学
    • 120 篇 图书情报与档案管...
    • 50 篇 管理科学与工程(可...
    • 33 篇 工商管理
  • 139 篇 医学
    • 138 篇 临床医学
    • 21 篇 基础医学(可授医学...
  • 20 篇 法学
    • 19 篇 社会学
  • 11 篇 农学
  • 10 篇 教育学
  • 7 篇 经济学
  • 3 篇 军事学
  • 3 篇 艺术学

主题

  • 2,304 篇 computer vision
  • 871 篇 pattern recognit...
  • 640 篇 cameras
  • 634 篇 computer science
  • 577 篇 face recognition
  • 553 篇 layout
  • 523 篇 image segmentati...
  • 509 篇 conferences
  • 503 篇 shape
  • 450 篇 robustness
  • 438 篇 object recogniti...
  • 390 篇 humans
  • 341 篇 feature extracti...
  • 318 篇 training
  • 307 篇 object detection
  • 261 篇 application soft...
  • 259 篇 image recognitio...
  • 250 篇 lighting
  • 239 篇 image reconstruc...
  • 237 篇 computational mo...

机构

  • 44 篇 microsoft resear...
  • 26 篇 department of co...
  • 21 篇 swiss fed inst t...
  • 21 篇 school of comput...
  • 20 篇 department of co...
  • 19 篇 swiss fed inst t...
  • 19 篇 carnegie mellon ...
  • 18 篇 department of co...
  • 17 篇 department of in...
  • 17 篇 the robotics ins...
  • 17 篇 institute of com...
  • 16 篇 univ sci & techn...
  • 16 篇 robotics institu...
  • 15 篇 tsinghua univ pe...
  • 14 篇 department of el...
  • 14 篇 school of comput...
  • 14 篇 school of comput...
  • 13 篇 univ maryland co...
  • 13 篇 microsoft resear...
  • 13 篇 microsoft resear...

作者

  • 39 篇 timofte radu
  • 28 篇 s.k. nayar
  • 25 篇 xiaoou tang
  • 25 篇 huang thomas s.
  • 22 篇 t. kanade
  • 20 篇 t.s. huang
  • 19 篇 van gool luc
  • 19 篇 t. darrell
  • 19 篇 chellappa rama
  • 18 篇 nayar shree k.
  • 17 篇 a.k. jain
  • 17 篇 a. zisserman
  • 17 篇 jain anil k.
  • 17 篇 zisserman andrew
  • 16 篇 g. healey
  • 16 篇 torralba antonio
  • 16 篇 heung-yeung shum
  • 16 篇 l. van gool
  • 15 篇 zhang lei
  • 15 篇 li stan z.

语言

  • 6,544 篇 英文
  • 1 篇 其他
检索条件"任意字段=2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, CVPR 2005"
6545 条 记 录,以下是241-250 订阅
排序:
PAND: Precise Action recognition on Naturalistic Driving
PAND: Precise Action Recognition on Naturalistic Driving
收藏 引用
ieee/CVF conference on computer vision and pattern recognition (cvpr)
作者: Zhao, Hangyue Xiao, Yuchao Zhao, Yanyun Beijing Univ Posts & Telecommun Beijing Peoples R China Beijing Key Lab Network Syst & Network Culture Beijing Peoples R China
Temporal action localization for untrimmed videos is a difficult problem in computer vision. It is challenge to infer the start and end of activity instances on small-scale datasets covering multi-view information acc... 详细信息
来源: 评论
Generalized Category Discovery
Generalized Category Discovery
收藏 引用
ieee/CVF conference on computer vision and pattern recognition (cvpr)
作者: Vaze, Sagar Hant, Kai Vedaldi, Andrea Zisserman, Andrew Univ Oxford Dept Engn Sci Visual Geometry Grp Oxford England Univ Hong Kong Hong Kong Peoples R China
In this paper, we consider a highly general image recognition setting wherein, given a labelled and unlabelled set of images, the task is to categorize all images in the unlabelled set. Here, the unlabelled images may... 详细信息
来源: 评论
DRHDR: A Dual branch Residual Network for Multi-Bracket High Dynamic Range Imaging
DRHDR: A Dual branch Residual Network for Multi-Bracket High...
收藏 引用
ieee/CVF conference on computer vision and pattern recognition (cvpr)
作者: Marin-Vega, Juan Sloth, Michael Schneider-Kamp, Peter Rottger, Richard Univ Southern Denmark Dept Math & Comp Sci IMADA Odense Denmark Esoft Syst Odense Denmark
We introduce DRHDR, a Dual branch Residual Convolutional Neural Network for Multi-Bracket HDR Imaging. To address the challenges of fusing multiple brackets from dynamic scenes, we propose an efficient dual branch net... 详细信息
来源: 评论
Multi-Class Cell Detection Using Modified Self-Attention
Multi-Class Cell Detection Using Modified Self-Attention
收藏 引用
ieee/CVF conference on computer vision and pattern recognition (cvpr)
作者: Sugimoto, Tatsuhiko Ito, Hiroaki Teramoto, Yuki Yoshizawa, Akihiko Bise, Ryoma Kyushu Univ Fukuoka Japan Kyoto Univ Hosp Kyoto Japan
Multi-class cell detection (cancer or non-cancer) from a whole slide image (WSI) is an important task for pathological diagnosis. Cancer and non-cancer cells often have a similar appearance, so it is difficult even fo... 详细信息
来源: 评论
Generative Flows as a General Purpose Solution for Inverse Problems
Generative Flows as a General Purpose Solution for Inverse P...
收藏 引用
ieee/CVF conference on computer vision and pattern recognition (cvpr)
作者: Chavez, Jose A. San Pablo Catholic Univ Arequipa Peru
Due to the success of generative flows to model data distributions, they have been explored in inverse problems. Given a pre-trained generative flow, previous work proposed to minimize the 2-norm of the latent variabl... 详细信息
来源: 评论
Medusa: Universal Feature Learning via Attentional Multitasking
Medusa: Universal Feature Learning via Attentional Multitask...
收藏 引用
ieee/CVF conference on computer vision and pattern recognition (cvpr)
作者: Spencer, Jaime Bowden, Richard Hadfield, Simon Univ Surrey Ctr Vis Speech & Signal Proc CVSSP Guildford Surrey England
Recent approaches to multi-task learning (MTL) have focused on modelling connections between tasks at the decoder level. This leads to a tight coupling between tasks, which need retraining if a new task is inserted or... 详细信息
来源: 评论
Artistic Style Novel View Synthesis Based on A Single Image
Artistic Style Novel View Synthesis Based on A Single Image
收藏 引用
ieee/CVF conference on computer vision and pattern recognition (cvpr)
作者: Tseng, Kuan-Wei Lee, Yao-Chih Chen, Chu-Song Natl Taiwan Univ Taipei Taiwan Tokyo Inst Technol Tokyo Japan
Recent progress in 3D display technologies has raised the demand for stylized 3D digital content. Previous approaches either perform style transfer on stereoscopic image pairs or reconstruct 3D environment with multip... 详细信息
来源: 评论
Stargazer: A Transformer-based Driver Action Detection System for Intelligent Transportation
Stargazer: A Transformer-based Driver Action Detection Syste...
收藏 引用
ieee/CVF conference on computer vision and pattern recognition (cvpr)
作者: Liang, Junwei Zhu, He Zhang, Enwei Zhang, Jun Tencent Youtu Lab Shenzhen Peoples R China Tsinghua Univ Beijing Peoples R China
Distracted driver actions can be dangerous and cause severe accidents. Thus, it is important to detect and eliminate distracted driving behaviors on the road to save lives. To this end, we study driver action detectio... 详细信息
来源: 评论
Neural Face Video Compression using Multiple Views
Neural Face Video Compression using Multiple Views
收藏 引用
ieee/CVF conference on computer vision and pattern recognition (cvpr)
作者: Volokitin, Anna Brugger, Stefan Benlalah, Ali Martin, Sebastian Amberg, Brian Tschannen, Michael Swiss Fed Inst Technol Zurich Switzerland Apple Cupertino CA USA
Recent advances in deep generative models led to the development of neural face video compression codecs that use an order of magnitude less bandwidth than engineered codecs. These neural codecs reconstruct the curren... 详细信息
来源: 评论
Domain Adaptable Normalization for Semi-Supervised Action recognition in the Dark
Domain Adaptable Normalization for Semi-Supervised Action Re...
收藏 引用
ieee/CVF conference on computer vision and pattern recognition (cvpr)
作者: Liang, Zixi Chen, Jiajun Chen, Rui Zheng, Bingbing Zhou, Mingyue Gao, Huaien Lin, Shan Guangzhou Xi Ma Informat Technol Co Guangzhou Peoples R China
Action recognition in the dark is gaining more and more attention with the rapid development of intelligent recognition applications in real-world applications, e.g. self-driving at night and night surveillance. Howev... 详细信息
来源: 评论