咨询与建议

限定检索结果

文献类型

  • 6,506 篇 会议
  • 29 篇 期刊文献
  • 10 册 图书

馆藏范围

  • 6,544 篇 电子文献
  • 1 种 纸本馆藏

日期分布

学科分类号

  • 3,906 篇 工学
    • 3,683 篇 计算机科学与技术...
    • 1,504 篇 软件工程
    • 802 篇 光学工程
    • 359 篇 信息与通信工程
    • 256 篇 控制科学与工程
    • 204 篇 机械工程
    • 176 篇 电气工程
    • 95 篇 生物医学工程(可授...
    • 79 篇 生物工程
    • 77 篇 电子科学与技术(可...
    • 61 篇 仪器科学与技术
    • 38 篇 建筑学
    • 36 篇 力学(可授工学、理...
    • 34 篇 土木工程
    • 31 篇 航空宇航科学与技...
    • 31 篇 安全科学与工程
    • 22 篇 材料科学与工程(可...
    • 22 篇 交通运输工程
  • 1,537 篇 理学
    • 980 篇 物理学
    • 960 篇 数学
    • 376 篇 统计学(可授理学、...
    • 152 篇 生物学
    • 34 篇 系统科学
    • 24 篇 化学
  • 168 篇 管理学
    • 120 篇 图书情报与档案管...
    • 50 篇 管理科学与工程(可...
    • 33 篇 工商管理
  • 139 篇 医学
    • 138 篇 临床医学
    • 21 篇 基础医学(可授医学...
  • 20 篇 法学
    • 19 篇 社会学
  • 11 篇 农学
  • 10 篇 教育学
  • 7 篇 经济学
  • 3 篇 军事学
  • 3 篇 艺术学

主题

  • 2,304 篇 computer vision
  • 871 篇 pattern recognit...
  • 640 篇 cameras
  • 634 篇 computer science
  • 577 篇 face recognition
  • 553 篇 layout
  • 523 篇 image segmentati...
  • 509 篇 conferences
  • 503 篇 shape
  • 450 篇 robustness
  • 438 篇 object recogniti...
  • 390 篇 humans
  • 341 篇 feature extracti...
  • 318 篇 training
  • 307 篇 object detection
  • 261 篇 application soft...
  • 259 篇 image recognitio...
  • 250 篇 lighting
  • 239 篇 image reconstruc...
  • 237 篇 computational mo...

机构

  • 44 篇 microsoft resear...
  • 26 篇 department of co...
  • 21 篇 swiss fed inst t...
  • 21 篇 school of comput...
  • 20 篇 department of co...
  • 19 篇 swiss fed inst t...
  • 19 篇 carnegie mellon ...
  • 18 篇 department of co...
  • 17 篇 department of in...
  • 17 篇 the robotics ins...
  • 17 篇 institute of com...
  • 16 篇 univ sci & techn...
  • 16 篇 robotics institu...
  • 15 篇 tsinghua univ pe...
  • 14 篇 department of el...
  • 14 篇 school of comput...
  • 14 篇 school of comput...
  • 13 篇 univ maryland co...
  • 13 篇 microsoft resear...
  • 13 篇 microsoft resear...

作者

  • 39 篇 timofte radu
  • 28 篇 s.k. nayar
  • 25 篇 xiaoou tang
  • 25 篇 huang thomas s.
  • 22 篇 t. kanade
  • 20 篇 t.s. huang
  • 19 篇 van gool luc
  • 19 篇 t. darrell
  • 19 篇 chellappa rama
  • 18 篇 nayar shree k.
  • 17 篇 a.k. jain
  • 17 篇 a. zisserman
  • 17 篇 jain anil k.
  • 17 篇 zisserman andrew
  • 16 篇 g. healey
  • 16 篇 torralba antonio
  • 16 篇 heung-yeung shum
  • 16 篇 l. van gool
  • 15 篇 zhang lei
  • 15 篇 li stan z.

语言

  • 6,544 篇 英文
  • 1 篇 其他
检索条件"任意字段=2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, CVPR 2005"
6545 条 记 录,以下是281-290 订阅
排序:
SymDNN: Simple & Effective Adversarial Robustness for Embedded Systems
SymDNN: Simple & Effective Adversarial Robustness for Embedd...
收藏 引用
ieee/CVF conference on computer vision and pattern recognition (cvpr)
作者: Dey, Swarnava Dasgupta, Pallab Chakrabarti, Partha P. Indian Inst Technol Kharagpur Kharagpur 721302 W Bengal India
We propose SymDNN, a Deep Neural Network (DNN) inference scheme, to segment an input image into small patches, replace those patches with representative symbols, and use the reconstructed image for CNN inference. This... 详细信息
来源: 评论
Multi-view Multi-label Canonical Correlation Analysis for Cross-modal Matching and Retrieval
Multi-view Multi-label Canonical Correlation Analysis for Cr...
收藏 引用
ieee/CVF conference on computer vision and pattern recognition (cvpr)
作者: Sanghavi, Rushil Verma, Yashaswi IIT Jodhpur Jodhpur Rajasthan India
In this paper, we address the problem of cross-modal retrieval in presence of multi-view and multi-label data. For this, we present Multi-view Multi-label Canonical Correlation Analysis (or MVMLCCA), which is a genera... 详细信息
来源: 评论
CarlaScenes: A synthetic dataset for odometry in autonomous driving
CarlaScenes: A synthetic dataset for odometry in autonomous ...
收藏 引用
ieee/CVF conference on computer vision and pattern recognition (cvpr)
作者: Kloukiniotis, Andreas Papandreou, Andreas Anagnostopoulos, Christos Lalos, Aris Kapsalas, Petros Nguyen, D-, V Moustakas, Konstantinos Univ Patras Patras Greece ISI Ind Syst Inst Patras Patras Greece Panasonic Automot Langen Germany
Despite the great scientific effort to capture adequately the complex environments in which autonomous vehicles (AVs) operate there are still use-cases that even SoA methods fail to handle. Specifically in odometry pr... 详细信息
来源: 评论
Searching for Efficient Neural Architectures for On-Device ML on Edge TPUs
Searching for Efficient Neural Architectures for On-Device M...
收藏 引用
ieee/CVF conference on computer vision and pattern recognition (cvpr)
作者: Akin, Berkin Gupta, Suyog Long, Yun Spiridonov, Anton Wang, Zhuo White, Marie Xu, Hao Zhou, Ping Zhou, Yanqi
On-device ML accelerators are becoming a standard in modern mobile system-on-chips (SoC). Neural architecture search (NAS) comes to the rescue for efficiently utilizing the high compute throughput offered by these acc... 详细信息
来源: 评论
Alleviating Representational Shift for Continual Fine-tuning
Alleviating Representational Shift for Continual Fine-tuning
收藏 引用
ieee/CVF conference on computer vision and pattern recognition (cvpr)
作者: Jie, Shibo Deng, Zhi-Hong Li, Ziheng Peking Univ Sch Artificial Intelligence Beijing Peoples R China
We study a practical setting of continual learning: fine-tuning on a pre-trained model continually. Previous work has found that, when training on new tasks, the features (penultimate layer representations) of previou... 详细信息
来源: 评论
Out-Of-Distribution Detection In Unsupervised Continual Learning
Out-Of-Distribution Detection In Unsupervised Continual Lear...
收藏 引用
ieee/CVF conference on computer vision and pattern recognition (cvpr)
作者: He, Jiangpeng Zhu, Fengqing Purdue Univ Elmore Family Sch Elect & Comp Engn W Lafayette IN 47907 USA
Unsupervised continual learning aims to learn new tasks incrementally without requiring human annotations. However, most existing methods, especially those targeted on image classification, only work in a simplified s... 详细信息
来源: 评论
Multi-Camera Vehicle Tracking System for AI City Challenge 2022
Multi-Camera Vehicle Tracking System for AI City Challenge 2...
收藏 引用
ieee/CVF conference on computer vision and pattern recognition (cvpr)
作者: Li, Fei Wang, Zhen Nie, Ding Zhang, Shiyi Jiang, Xingqun Zhao, Xingxing Hu, Peng BOE Technol Grp Beijing Peoples R China
Multi-Target Multi-Camera tracking is a fundamental task for intelligent traffic systems. The track 1 of AI City Challenge 2022 aims at the city-scale multi-camera vehicle tracking task. In this paper we propose an ac... 详细信息
来源: 评论
Cluster-to-adapt: Few Shot Domain Adaptation for Semantic Segmentation across Disjoint Labels
Cluster-to-adapt: Few Shot Domain Adaptation for Semantic Se...
收藏 引用
ieee/CVF conference on computer vision and pattern recognition (cvpr)
作者: Kalluri, Tarun Chandraker, Manmohan Univ Calif San Diego La Jolla CA 92093 USA
Domain adaptation for semantic segmentation across datasets consisting of the same categories has seen several recent successes. However, a more general scenario is when the source and target datasets correspond to no... 详细信息
来源: 评论
S2F2: Single-Stage Flow Forecasting for Future Multiple Trajectories Prediction
S2F2: Single-Stage Flow Forecasting for Future Multiple Traj...
收藏 引用
ieee/CVF conference on computer vision and pattern recognition (cvpr)
作者: Chen, Yu-Wen Yang, Hsuan-Kung Chiu, Chu-Chi Lee, Chun-Yi Natl Tsing Hua Univ Dept Comp Sci Elsa Lab Hsinchu Taiwan
In this work, we present a single-stage framework, named S2F2, for forecasting multiple human trajectories from raw video images by predicting future optical flows. S2F2 differs from the previous two-stage approaches ... 详细信息
来源: 评论
Improving Multi-Target Multi-Camera Tracking by Track Refinement and Completion
Improving Multi-Target Multi-Camera Tracking by Track Refine...
收藏 引用
ieee/CVF conference on computer vision and pattern recognition (cvpr)
作者: Specker, Andreas Florin, Lucas Cormier, Mickael Beyerer, Juergen Karlsruhe Inst Technol Karlsruhe Germany Fraunhofer IOSB Karlsruhe Germany Fraunhofer Ctr Machine Learning St Augustin Germany
Multi-camera tracking of vehicles on a city-wide level is a core component of modern traffic monitoring systems. For this task, single-camera tracking failures are the most common causes of errors concerning automatic... 详细信息
来源: 评论