咨询与建议

限定检索结果

文献类型

  • 6,506 篇 会议
  • 29 篇 期刊文献
  • 10 册 图书

馆藏范围

  • 6,544 篇 电子文献
  • 1 种 纸本馆藏

日期分布

学科分类号

  • 3,906 篇 工学
    • 3,683 篇 计算机科学与技术...
    • 1,504 篇 软件工程
    • 802 篇 光学工程
    • 359 篇 信息与通信工程
    • 256 篇 控制科学与工程
    • 204 篇 机械工程
    • 176 篇 电气工程
    • 95 篇 生物医学工程(可授...
    • 79 篇 生物工程
    • 77 篇 电子科学与技术(可...
    • 61 篇 仪器科学与技术
    • 38 篇 建筑学
    • 36 篇 力学(可授工学、理...
    • 34 篇 土木工程
    • 31 篇 航空宇航科学与技...
    • 31 篇 安全科学与工程
    • 22 篇 材料科学与工程(可...
    • 22 篇 交通运输工程
  • 1,537 篇 理学
    • 980 篇 物理学
    • 960 篇 数学
    • 376 篇 统计学(可授理学、...
    • 152 篇 生物学
    • 34 篇 系统科学
    • 24 篇 化学
  • 168 篇 管理学
    • 120 篇 图书情报与档案管...
    • 50 篇 管理科学与工程(可...
    • 33 篇 工商管理
  • 139 篇 医学
    • 138 篇 临床医学
    • 21 篇 基础医学(可授医学...
  • 20 篇 法学
    • 19 篇 社会学
  • 11 篇 农学
  • 10 篇 教育学
  • 7 篇 经济学
  • 3 篇 军事学
  • 3 篇 艺术学

主题

  • 2,304 篇 computer vision
  • 871 篇 pattern recognit...
  • 640 篇 cameras
  • 634 篇 computer science
  • 577 篇 face recognition
  • 553 篇 layout
  • 523 篇 image segmentati...
  • 509 篇 conferences
  • 503 篇 shape
  • 450 篇 robustness
  • 438 篇 object recogniti...
  • 390 篇 humans
  • 341 篇 feature extracti...
  • 318 篇 training
  • 307 篇 object detection
  • 261 篇 application soft...
  • 259 篇 image recognitio...
  • 250 篇 lighting
  • 239 篇 image reconstruc...
  • 237 篇 computational mo...

机构

  • 44 篇 microsoft resear...
  • 26 篇 department of co...
  • 21 篇 swiss fed inst t...
  • 21 篇 school of comput...
  • 20 篇 department of co...
  • 19 篇 swiss fed inst t...
  • 19 篇 carnegie mellon ...
  • 18 篇 department of co...
  • 17 篇 department of in...
  • 17 篇 the robotics ins...
  • 17 篇 institute of com...
  • 16 篇 univ sci & techn...
  • 16 篇 robotics institu...
  • 15 篇 tsinghua univ pe...
  • 14 篇 department of el...
  • 14 篇 school of comput...
  • 14 篇 school of comput...
  • 13 篇 univ maryland co...
  • 13 篇 microsoft resear...
  • 13 篇 microsoft resear...

作者

  • 39 篇 timofte radu
  • 28 篇 s.k. nayar
  • 25 篇 xiaoou tang
  • 25 篇 huang thomas s.
  • 22 篇 t. kanade
  • 20 篇 t.s. huang
  • 19 篇 van gool luc
  • 19 篇 t. darrell
  • 19 篇 chellappa rama
  • 18 篇 nayar shree k.
  • 17 篇 a.k. jain
  • 17 篇 a. zisserman
  • 17 篇 jain anil k.
  • 17 篇 zisserman andrew
  • 16 篇 g. healey
  • 16 篇 torralba antonio
  • 16 篇 heung-yeung shum
  • 16 篇 l. van gool
  • 15 篇 zhang lei
  • 15 篇 li stan z.

语言

  • 6,542 篇 英文
  • 3 篇 其他
检索条件"任意字段=2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, CVPR 2005"
6545 条 记 录,以下是3821-3830 订阅
排序:
Kernel-based Bayesian filtering for object tracking
Kernel-based Bayesian filtering for object tracking
收藏 引用
conference on computer vision and pattern recognition (cvpr)
作者: Bohyung Han Ying Zhu D. Comaniciu L. Davis Department of Computer Science University of Maryland College Park MD USA Real-Time Vision and Modeling Siemens Corporate Research Inc. Princeton NJ USA Integrated Data and Systems Siemens Corporate Research Inc. Princeton NJ USA
Particle filtering provides a general framework for propagating probability density functions in nonlinear and non-Gaussian systems. However, the algorithm is based on a Monte Carlo approach and sampling is a problema... 详细信息
来源: 评论
A Bayesian approach for shadow extraction from a single image
A Bayesian approach for shadow extraction from a single imag...
收藏 引用
Proceedings - 10th ieee International conference on computer vision, ICCV 2005
作者: Wu, Tai-Pang Tang, Chi-Keung Vision and Graphics Group Hong Kong University of Science and Technology Clear Water Bay Hong Kong Hong Kong
This paper addresses the problem of shadow extraction from a single image of a complex natural scene. No simplifying assumption on the camera and the light source other than the Lambertian assumption is used. Our meth... 详细信息
来源: 评论
Creating invariance to "nuisance parameters" in face recognition
Creating invariance to "nuisance parameters" in face recogni...
收藏 引用
conference on computer vision and pattern recognition (cvpr)
作者: S.J.D. Prince J.H. Elder Centre for Vision Research York University Toronto ONT Canada
A major goal for face recognition is to identify faces where the pose of the probe is different from the stored face. Typical feature vectors vary more with pose than with identity, leading to very poor recognition pe... 详细信息
来源: 评论
Towards complete generic camera calibration
Towards complete generic camera calibration
收藏 引用
conference on computer vision and pattern recognition (cvpr)
作者: Srikumar Ramalingam P. Sturm S.K. Lodha Department of Computer Science University of California Santa Cruz CA USA INRIA Rhône-Alpes GRAVIR-CNRS Montbonnot France
We consider the problem of calibrating a highly generic imaging model, that consists of a non-parametric association of a projection ray in 3D to every pixel in an image. Previous calibration approaches for this model... 详细信息
来源: 评论
Automatic Sign Detection and recognition in Natural Scenes
Automatic Sign Detection and Recognition in Natural Scenes
收藏 引用
ieee computer society conference on computer vision and pattern recognition Workshops (cvprW)
作者: P. Silapachote J. Weinman A. Hanson M.A. Mattar R. Weiss Department of Computer Science University of Massachusetts Amherst Amherst MA USA Hampshire College School of Cognitive Sciences Amherst MA USA
Visually impaired individuals are unable to utilize the significant amount of information in signs. VIDI is a system for detecting and recognizing signs in the environment and voice synthesizing their contents. The wi... 详细信息
来源: 评论
Cross-generalization: learning novel classes from a single example by feature replacement
Cross-generalization: learning novel classes from a single e...
收藏 引用
conference on computer vision and pattern recognition (cvpr)
作者: E. Bart S. Ullman Department of Computer Science and Applied Mathematics Weizmann Institute of Science Rehovot Israel
We develop an object classification method that can learn a novel class from a single training example. In this method, experience with already learned classes is used to facilitate the learning of novel classes. Our ... 详细信息
来源: 评论
Error-metrics for Camera Ego-motion Estimation
Error-metrics for Camera Ego-motion Estimation
收藏 引用
ieee computer society conference on computer vision and pattern recognition Workshops (cvprW)
作者: Juhua Zhu Ying Zhu V. Ramesh Electrical Engineering Department Princeton University USA Real-Time Vision & Modeling Siemens Corporate Research Inc. USA
This paper presents a scheme of camera ego-motion estimation through locating the focus of expansion (FOE). We showed that the bilinear constraint [2] leads to a suboptimal solution of motion parameters in the sense t... 详细信息
来源: 评论
Flattening curved documents in images
Flattening curved documents in images
收藏 引用
conference on computer vision and pattern recognition (cvpr)
作者: Jian Liang D. DeMenthon D. Doermann Language and Media Processing Laboratory University of Maryland College Park MD USA
Compared to scanned images, document pictures captured by camera can suffer from distortions due to perspective and page warping. It is necessary to restore a frontal planar view of the page before other OCR technique... 详细信息
来源: 评论
Online detection and classification of moving objects using progressively improving detectors
Online detection and classification of moving objects using ...
收藏 引用
conference on computer vision and pattern recognition (cvpr)
作者: O. Javed S. Ali M. Shah Computer Vision Laboratory University of Central Florida Orlando FL USA
Boosting based detection methods have successfully been used for robust detection of faces and pedestrians. However, a very large amount of labeled examples are required for training such a classifier. Moreover, once ... 详细信息
来源: 评论
A Swarm-Based Volition/Attention Framework for Object recognition
A Swarm-Based Volition/Attention Framework for Object Recogn...
收藏 引用
ieee computer society conference on computer vision and pattern recognition Workshops (cvprW)
作者: Y. Owechko S. Medasani HRL Laboratories LLC Malibu CA USA
Visual attention helps identify the salient parts of a scene and enables efficient object recognition by allocating visual resources to more relevant regions of the scene. In this paper, we present an object recogniti... 详细信息
来源: 评论