咨询与建议

限定检索结果

文献类型

  • 2,396 篇 会议
  • 64 篇 期刊文献
  • 1 册 图书

馆藏范围

  • 2,461 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 1,351 篇 工学
    • 961 篇 电气工程
    • 876 篇 计算机科学与技术...
    • 310 篇 信息与通信工程
    • 266 篇 软件工程
    • 108 篇 控制科学与工程
    • 104 篇 仪器科学与技术
    • 64 篇 电子科学与技术(可...
    • 39 篇 光学工程
    • 31 篇 生物医学工程(可授...
    • 31 篇 生物工程
    • 14 篇 化学工程与技术
    • 13 篇 测绘科学与技术
    • 11 篇 机械工程
    • 11 篇 土木工程
    • 9 篇 动力工程及工程热...
    • 8 篇 航空宇航科学与技...
    • 7 篇 建筑学
  • 417 篇 理学
    • 186 篇 数学
    • 156 篇 物理学
    • 116 篇 统计学(可授理学、...
    • 82 篇 系统科学
    • 43 篇 生物学
    • 14 篇 化学
  • 102 篇 医学
    • 101 篇 临床医学
    • 18 篇 基础医学(可授医学...
    • 16 篇 药学(可授医学、理...
  • 84 篇 管理学
    • 52 篇 图书情报与档案管...
    • 34 篇 管理科学与工程(可...
    • 12 篇 工商管理
  • 7 篇 教育学
    • 7 篇 教育学
  • 7 篇 农学
  • 6 篇 经济学
  • 5 篇 法学
  • 3 篇 文学
  • 1 篇 军事学
  • 1 篇 艺术学

主题

  • 537 篇 machine learning
  • 286 篇 signal processin...
  • 241 篇 signal processin...
  • 215 篇 training
  • 143 篇 support vector m...
  • 135 篇 deep learning
  • 135 篇 kernel
  • 123 篇 machine learning...
  • 117 篇 feature extracti...
  • 114 篇 neural networks
  • 91 篇 conferences
  • 84 篇 vectors
  • 80 篇 learning systems
  • 79 篇 optimization
  • 78 篇 computational mo...
  • 73 篇 estimation
  • 69 篇 signal to noise ...
  • 69 篇 accuracy
  • 67 篇 robustness
  • 66 篇 dictionaries

机构

  • 14 篇 ieee
  • 8 篇 school of eecs o...
  • 7 篇 georgia inst tec...
  • 7 篇 georgia inst tec...
  • 6 篇 princeton univ d...
  • 6 篇 natl chiao tung ...
  • 6 篇 georgia institut...
  • 6 篇 oregon state uni...
  • 6 篇 signal processin...
  • 5 篇 national mobile ...
  • 5 篇 princeton univ p...
  • 5 篇 mila quebec ai i...
  • 5 篇 middle east tech...
  • 5 篇 southeast univ n...
  • 5 篇 school of electr...
  • 5 篇 department of si...
  • 4 篇 tech univ munich...
  • 4 篇 department of el...
  • 4 篇 princeton univer...
  • 4 篇 signal processin...

作者

  • 15 篇 erdogmus deniz
  • 13 篇 principe jose c.
  • 12 篇 d. erdogmus
  • 12 篇 chien jen-tzung
  • 10 篇 raviv raich
  • 10 篇 lars kai hansen
  • 9 篇 jenssen robert
  • 9 篇 larsen jan
  • 8 篇 nandi asoke k.
  • 8 篇 robert jenssen
  • 8 篇 deniz erdogmus
  • 8 篇 j.c. principe
  • 8 篇 saeid sanei
  • 8 篇 anastasios tefas
  • 8 篇 tefas anastasios
  • 8 篇 asoke k. nandi
  • 8 篇 hansen lars kai
  • 7 篇 jen-tzung chien
  • 7 篇 simeone osvaldo
  • 7 篇 miller david j.

语言

  • 2,455 篇 英文
  • 4 篇 中文
  • 2 篇 其他
检索条件"任意字段=2005 IEEE Workshop on Machine Learning for Signal Processing"
2461 条 记 录,以下是41-50 订阅
排序:
2006 ieee workshop on machine learning for signal processing
收藏 引用
ieee signal processing Letters 2006年 第2期13卷 114-114页
Prospective authors are requested to submit new, unpublished manuscripts for inclusion in the upcoming event described in this call for papers.
来源: 评论
2007 ieee workshop on machine learning for signal processing [Call for Papers]
收藏 引用
ieee signal processing Magazine 2007年 第2期24卷 5-5页
Prospective authors are requested to submit new, unpublished manuscripts for inclusion in the upcoming event described in this call for papers.
来源: 评论
2006 ieee workshop on machine learning for signal processing - Call for Papers
收藏 引用
ieee signal processing Magazine 2006年 第1期23卷 103-103页
Prospective authors are requested to submit new, unpublished manuscripts for inclusion in the upcoming event described in this call for papers.
来源: 评论
ieee machine learning for signal processing workshop
收藏 引用
ieee signal processing Magazine 2021年 第3期38卷 C3-C3页
Prospective authors are requested to submit new, unpublished manuscripts for inclusion in the upcoming event described in this call for papers.
来源: 评论
2006 ieee workshop on machine learning for signal processing
收藏 引用
ieee Transactions on Audio, Speech, and Language processing 2006年 第2期14卷 728-728页
Provides notice of upcoming conference events of interest to practitioners and researchers.
来源: 评论
Deep learning and Its Applications to signal and Information processing
收藏 引用
ieee signal processing MAGAZINE 2011年 第1期28卷 145-+页
作者: Yu, Dong Deng, Li Microsoft Res Redmond WA USA
Today, signal processing research has a significantly widened its scope compared with just a few years ago [4], and machine learning has been an important technical area of the signal processing society. Since 2006, d... 详细信息
来源: 评论
Cascade jump support vector machine classifiers
Cascade jump support vector machine classifiers
收藏 引用
ieee workshop on machine learning for signal processing (MLSP)
作者: Ravindran, S Anderson, DV Rehg, J Georgia Inst Technol Sch Elect & Comp Engn Atlanta GA 30332 USA
In this paper we present a new support vector machine (SVM) based classifier that is able to achieve better generalization as compared to the standard SVM. Better generalization is achieved by using a cascade of modif... 详细信息
来源: 评论
Spectral clustering with mean shift preprocessing
Spectral clustering with mean shift preprocessing
收藏 引用
ieee workshop on machine learning for signal processing (MLSP)
作者: Ozertem, U Erdogmus, D Oregon Hlth & Sci Univ CSEE Dept OGI Portland OR 97201 USA
Clustering is a fundamental problem in machine learning with numerous important applications in statistical signal processing, pattern recognition, and computer vision, where unsupervised analysis of data classificati... 详细信息
来源: 评论
Detection and classification of rolling element bearing faults using support vector machines
Detection and classification of rolling element bearing faul...
收藏 引用
ieee workshop on machine learning for signal processing (MLSP)
作者: Rojas, A Nandi, AK Univ Liverpool Dept Elect Engn & Elect Signal Proc & Commun Grp Liverpool L69 3GJ Merseyside England
This paper proposes development of Support Vector machines (SVMs) for detection and classification of rolling-element bearing faults. The training of the SVMs is carried out using the Sequential Minimal Optimization (... 详细信息
来源: 评论
Training classifiers for tree-structured sets of categories
Training classifiers for tree-structured sets of categories
收藏 引用
ieee workshop on machine learning for signal processing (MLSP)
作者: Gutiérrez-González, D Ortega-Moral, M De-Pablo, ML Cid-Sueiro, J Univ Carlos III Madrid Dept Signal Theory & Commun Madrid 28911 Spain
In this paper we propose a new method for training classifiers for multi-class problems when classes are not (necessarily) mutually exclusive and may be related by means of a probabilistic tree structure. Our method i... 详细信息
来源: 评论