咨询与建议

限定检索结果

文献类型

  • 2,396 篇 会议
  • 64 篇 期刊文献
  • 1 册 图书

馆藏范围

  • 2,461 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 1,351 篇 工学
    • 961 篇 电气工程
    • 876 篇 计算机科学与技术...
    • 310 篇 信息与通信工程
    • 266 篇 软件工程
    • 108 篇 控制科学与工程
    • 104 篇 仪器科学与技术
    • 64 篇 电子科学与技术(可...
    • 39 篇 光学工程
    • 31 篇 生物医学工程(可授...
    • 31 篇 生物工程
    • 14 篇 化学工程与技术
    • 13 篇 测绘科学与技术
    • 11 篇 机械工程
    • 11 篇 土木工程
    • 9 篇 动力工程及工程热...
    • 8 篇 航空宇航科学与技...
    • 7 篇 建筑学
  • 417 篇 理学
    • 186 篇 数学
    • 156 篇 物理学
    • 116 篇 统计学(可授理学、...
    • 82 篇 系统科学
    • 43 篇 生物学
    • 14 篇 化学
  • 102 篇 医学
    • 101 篇 临床医学
    • 18 篇 基础医学(可授医学...
    • 16 篇 药学(可授医学、理...
  • 84 篇 管理学
    • 52 篇 图书情报与档案管...
    • 34 篇 管理科学与工程(可...
    • 12 篇 工商管理
  • 7 篇 教育学
    • 7 篇 教育学
  • 7 篇 农学
  • 6 篇 经济学
  • 5 篇 法学
  • 3 篇 文学
  • 1 篇 军事学
  • 1 篇 艺术学

主题

  • 537 篇 machine learning
  • 286 篇 signal processin...
  • 241 篇 signal processin...
  • 215 篇 training
  • 143 篇 support vector m...
  • 135 篇 deep learning
  • 135 篇 kernel
  • 123 篇 machine learning...
  • 117 篇 feature extracti...
  • 114 篇 neural networks
  • 91 篇 conferences
  • 84 篇 vectors
  • 80 篇 learning systems
  • 79 篇 optimization
  • 78 篇 computational mo...
  • 73 篇 estimation
  • 69 篇 signal to noise ...
  • 69 篇 accuracy
  • 67 篇 robustness
  • 66 篇 dictionaries

机构

  • 14 篇 ieee
  • 8 篇 school of eecs o...
  • 7 篇 georgia inst tec...
  • 7 篇 georgia inst tec...
  • 6 篇 princeton univ d...
  • 6 篇 natl chiao tung ...
  • 6 篇 georgia institut...
  • 6 篇 oregon state uni...
  • 6 篇 signal processin...
  • 5 篇 national mobile ...
  • 5 篇 princeton univ p...
  • 5 篇 mila quebec ai i...
  • 5 篇 middle east tech...
  • 5 篇 southeast univ n...
  • 5 篇 school of electr...
  • 5 篇 department of si...
  • 4 篇 tech univ munich...
  • 4 篇 department of el...
  • 4 篇 princeton univer...
  • 4 篇 signal processin...

作者

  • 15 篇 erdogmus deniz
  • 13 篇 principe jose c.
  • 12 篇 d. erdogmus
  • 12 篇 chien jen-tzung
  • 10 篇 raviv raich
  • 10 篇 lars kai hansen
  • 9 篇 jenssen robert
  • 9 篇 larsen jan
  • 8 篇 nandi asoke k.
  • 8 篇 robert jenssen
  • 8 篇 deniz erdogmus
  • 8 篇 j.c. principe
  • 8 篇 saeid sanei
  • 8 篇 anastasios tefas
  • 8 篇 tefas anastasios
  • 8 篇 asoke k. nandi
  • 8 篇 hansen lars kai
  • 7 篇 jen-tzung chien
  • 7 篇 simeone osvaldo
  • 7 篇 miller david j.

语言

  • 2,455 篇 英文
  • 4 篇 中文
  • 2 篇 其他
检索条件"任意字段=2005 IEEE Workshop on Machine Learning for Signal Processing"
2461 条 记 录,以下是71-80 订阅
排序:
QUADRATIC MUTUAL INFORMATION REGULARIZATION IN REAL-TIME DEEP CNN MODELS  30
QUADRATIC MUTUAL INFORMATION REGULARIZATION IN REAL-TIME DEE...
收藏 引用
30th ieee International workshop on machine learning for signal processing (MLSP)
作者: Tzelepi, Maria Tefas, Anastasios Aristotle Univ Thessaloniki Dept Informat Thessaloniki Greece
In this paper, regularized lightweight deep convolutional neural network models, capable of effectively operating in realtime on devices with restricted computational power for highresolution video input are proposed.... 详细信息
来源: 评论
END-TO-END learning FOR RETROSPECTIVE CHANGE-POINT ESTIMATION  30
END-TO-END LEARNING FOR RETROSPECTIVE CHANGE-POINT ESTIMATIO...
收藏 引用
30th ieee International workshop on machine learning for signal processing (MLSP)
作者: Jones, Corinne Harchaoui, Zaid Univ Washington Dept Stat Seattle WA 98195 USA
We propose an approach to retrospective change-point estimation that includes learning feature representations from data. The feature representations are specified within a differentiable programming framework, that i... 详细信息
来源: 评论
COMPRESSIVE MAHALANOBIS CLASSIFIERS
COMPRESSIVE MAHALANOBIS CLASSIFIERS
收藏 引用
ieee workshop on machine learning for signal processing
作者: Barbano, Paolo Emilio Coifman, Ronald R. Yale Univ Dept Math New Haven CT 06520 USA
We propose a new framework for Detection/Estimation designed to avoid the loss of salient information in the process of reducing the dimensionality of digitized data. The main idea is a Semi-Supervised learning pre-pr... 详细信息
来源: 评论
SUPERVISED learning OF CLASSIFIERS VIA LEVEL SET SEGMENTATION
SUPERVISED LEARNING OF CLASSIFIERS VIA LEVEL SET SEGMENTATIO...
收藏 引用
ieee workshop on machine learning for signal processing
作者: Varshney, Kush R. Willsky, Alan S. MIT Informat & Decis Syst Lab Cambridge MA 02139 USA
A variational approach based on level set methods popular in image segmentation is presented for learning discriminative classifiers in general feature spaces. Nonlinear, nonparametric decision boundaries are obtained... 详细信息
来源: 评论
Cross-Pollination in signal processing Technical Areas
收藏 引用
ieee signal processing MAGAZINE 2009年 第6期26卷 2-+页
作者: [Anonymous] Editor in Chief
signal processing is multidisciplinary in nature. It provides mathematical analysis and computational operations on a wide range of signal or information types in diverse application fields that are typically classifi... 详细信息
来源: 评论
THE LINEAR PROCESS MIXTURE MODEL
THE LINEAR PROCESS MIXTURE MODEL
收藏 引用
23rd ieee International workshop on machine learning for signal processing (MLSP)
作者: Palmer, Jason A. Kreutz-Delgado, Ken Makeig, Scott Univ Calif San Diego Swartz Ctr Computat Neurosci La Jolla CA 92093 USA Univ Calif San Diego Dept Elect & Comp Engn La Jolla CA 92093 USA
We consider a likelihood framework for analyzing multivariate time series as mixtures of independent linear processes. We propose a flexible, Newton algorithm for estimating impulse response functions associated with ... 详细信息
来源: 评论
machine learning AS DIGITAL THERAPY ASSESSMENT FOR MOBILE GAIT REHABILITATION  28
MACHINE LEARNING AS DIGITAL THERAPY ASSESSMENT FOR MOBILE GA...
收藏 引用
ieee 28th International workshop on machine learning for signal processing (MLSP)
作者: Alcaraz, Javier Conte Moghaddamnia, Sanam Poschadel, Nils Peissig, Juergen Leibniz Univ Hannover Inst Commun Technol Hannover Germany
A novel real-time acoustic feedback (RTAF) based on machine learning to reduce the duration and to improve the progress in the rehabilitation is presented. Wearable technology (WT) has emerged as a viable means to pro... 详细信息
来源: 评论
FIRST-ORDER OPTIMIZATION FOR SUPERQUANTILE-BASED SUPERVISED learning  30
FIRST-ORDER OPTIMIZATION FOR SUPERQUANTILE-BASED SUPERVISED ...
收藏 引用
30th ieee International workshop on machine learning for signal processing (MLSP)
作者: Laguel, Yassine Malick, Jerome Harchaoui, Zaid UGA Lab J Kuntzmann Grenoble France CNRS Lab J Kuntzmann Grenoble France Univ Washington Seattle WA 98195 USA
Classical supervised learning via empirical risk (or negative log-likelihood) minimization hinges upon the assumption that the testing distribution coincides with the training distribution. This assumption can be chal... 详细信息
来源: 评论
learning WITH THE KERNEL signal TO NOISE RATIO
LEARNING WITH THE KERNEL SIGNAL TO NOISE RATIO
收藏 引用
22nd ieee International workshop on machine learning for signal processing (MLSP)
作者: Gomez-Chova, Luis Camps-Valls, Gustavo Univ Valencia Image Proc Lab E-46003 Valencia Spain
This paper presents the application of the kernel signal to noise ratio (KSNR) in the context of feature extraction to general machine learning and signal processing domains. The proposed approach maximizes the signal... 详细信息
来源: 评论
Threshold learning from samples drawn from the null hypothesis for the Generalized Likelihood Ratio CUSUM test
Threshold learning from samples drawn from the null hypothes...
收藏 引用
ieee workshop on machine learning for signal processing (MLSP)
作者: Hory, C Kokaram, A Christmas, WJ Univ Dublin Trinity Coll EEE Dept Dublin 2 Ireland
Although optimality of sequential tests for the detection of a change in the parameter of a model has been widely discussed, the test parameter tuning is still an issue. In this communication, we propose a learning st... 详细信息
来源: 评论