In this paper we analyze the classification performance of neural network structures without parametric inference. Making use of neural architecture search, we empirically demonstrate that it is possible to find rando...
详细信息
ISBN:
(纸本)9781665448994
In this paper we analyze the classification performance of neural network structures without parametric inference. Making use of neural architecture search, we empirically demonstrate that it is possible to find random weight architectures, a deep prior, that enables a linear classification to perform on par with fully trained deep counterparts. Through ablation experiments, we exclude the possibility of winning a weight initialization lottery and confirm that suitable deep priors do not require additional inference. In an extension to continual learning, we investigate the possibility of catastrophic interference free incremental learning. Under the assumption of classes originating from the same data distribution, a deep prior found on only a subset of classes is shown to allow discrimination of further classes through training of a simple linear classifier.
Honey fraud and adulteration are an increasing concern globally. Hyperspectral imaging and machine learning can detect adulterated honey within a known set of honey, where we have captured data at different sugar conc...
详细信息
ISBN:
(数字)9781665487399
ISBN:
(纸本)9781665487399
Honey fraud and adulteration are an increasing concern globally. Hyperspectral imaging and machine learning can detect adulterated honey within a known set of honey, where we have captured data at different sugar concentrations. Previous work in this area has used a minimal number of honey types, as sample preparation and data capture is a time-consuming process. This paper develops a new approach using variational autoencoders (VAEs) for generating adulterated honey data for unseen honey types. The results show that the binary adulteration detector can achieve on average 81.3% accuracy on unseen honey types by adding the generated data to the existing training data. Without including the generated data while training, the classifier can only achieve 44% on unseen honey types.
Learning a common representation space between vision and language allows deep networks to relate objects in the image to the corresponding semantic meaning. We present a model that learns a shared Gaussian mixture re...
详细信息
ISBN:
(数字)9781665487399
ISBN:
(纸本)9781665487399
Learning a common representation space between vision and language allows deep networks to relate objects in the image to the corresponding semantic meaning. We present a model that learns a shared Gaussian mixture representation imposing the compositionality of the text onto the visual domain without having explicit location supervision. By combining the spatial transformer with a representation learning approach we learn to split images into separately encoded patches to associate visual and textual representations in an interpretable manner. On variations of MNIST and CIFAR10, our model is able to perform weakly supervised object detection and demonstrates its ability to extrapolate to unseen combination of objects.
We study event-based sensors in the context of spacecraft guidance and control during a descent on Moon-like terrains. For this purpose, we develop a simulator reproducing the event-based camera outputs when exposed t...
详细信息
ISBN:
(纸本)9781665448994
We study event-based sensors in the context of spacecraft guidance and control during a descent on Moon-like terrains. For this purpose, we develop a simulator reproducing the event-based camera outputs when exposed to synthetic images of a space environment. We find that it is possible to reconstruct, in this context, the divergence of optical flow vectors (and therefore the time to contact) and use it in a simple control feedback scheme during simulated descents. The results obtained are very encouraging, albeit insufficient to meet the stringent safety constraints and modelling accuracy imposed upon space missions. We thus conclude by discussing future work aimed at addressing these limitations.
Line art plays a fundamental role in illustration and design, and allows for iteratively polishing designs. However, as they lack color, they can have issues in conveying final designs. In this work, we propose an int...
详细信息
ISBN:
(纸本)9781665448994
Line art plays a fundamental role in illustration and design, and allows for iteratively polishing designs. However, as they lack color, they can have issues in conveying final designs. In this work, we propose an interactive colorization approach based on a conditional generative adversarial network that takes both the line art and color hints as inputs to produce a high-quality colorized image. Our approach is based on a U-net architecture with a multi-discriminator framework. We propose a Concatenation and Spatial Attention module that is able to generate more consistent and higher quality of line art colorization from user given hints. We evaluate on a large-scale illustration dataset and comparison with existing approaches corroborate the effectiveness of our approach.
As the request for deep learning solutions increases, the need for explainability is even more fundamental. In this setting, particular attention has been given to visualization techniques, that try to attribute the r...
详细信息
ISBN:
(纸本)9781665448994
As the request for deep learning solutions increases, the need for explainability is even more fundamental. In this setting, particular attention has been given to visualization techniques, that try to attribute the right relevance to each input pixel with respect to the output of the network. In this paper, we focus on Class Activation Mapping (CAM) approaches, which provide an effective visualization by taking weighted averages of the activation maps. To enhance the evaluation and the reproducibility of such approaches, we propose a novel set of metrics to quantify explanation maps, which show better effectiveness and simplify comparisons between approaches. To evaluate the appropriateness of the proposal, we compare different CAM-based visualization methods on the entire ImageNet validation set, fostering proper comparisons and reproducibility.
We propose a simple yet effective proposal-free architecture for lidar panoptic segmentation. We jointly optimize both semantic segmentation and class-agnostic instance classification in a single network using a pilla...
详细信息
ISBN:
(数字)9781665487399
ISBN:
(纸本)9781665487399
We propose a simple yet effective proposal-free architecture for lidar panoptic segmentation. We jointly optimize both semantic segmentation and class-agnostic instance classification in a single network using a pilla-rbased bird's-eye view representation. The instance classification head learns pairwise affinity between pillars to determine whether the pillars belong to the same instance or not. We further propose a local clustering algorithm to propagate instance ids by merging semantic segmentation and affinity predictions. Our experiments on nuScenes dataset show that our approach outperforms previous proposal-free methods and is comparable to proposal-based methods which requires extra annotation from object detection.
In this paper, we propose an online movement-specific vehicle counting system to realize robust traffic flow analysis at crowded intersections. Our proposed framework adopts PP-YOLO as the vehicle detector and adapts ...
详细信息
ISBN:
(纸本)9781665448994
In this paper, we propose an online movement-specific vehicle counting system to realize robust traffic flow analysis at crowded intersections. Our proposed framework adopts PP-YOLO as the vehicle detector and adapts the Deep-Sort algorithm to perform multi-object tracking. In order to realize online and robust vehicle counting, we further adopt a shape-based movement assignment strategy to differentiate movements and carefully designed spatial constraints to effectively reduce false-positive counts. Our proposed framework achieves the overall S1-score of 0.9467, ranking the first in the AICITY2021-track1 challenge.
Machine Learning models have started to outperform medical experts in some classification tasks. Meanwhile, the question of how these classifiers produce certain results is attracting increasing research attention. Cu...
详细信息
ISBN:
(纸本)9781665448994
Machine Learning models have started to outperform medical experts in some classification tasks. Meanwhile, the question of how these classifiers produce certain results is attracting increasing research attention. Current interpretation methods provide a good starting point in investigating such questions, but they still massively lack the relation to the problem domain. In this work, we present how explanations of an AI system for skin image analysis can be made more domain-specific. We apply the synthesis of Local Interpretable Model-agnostic Explanations (LIME) with the ABCD-rule, a diagnostic approach of dermatologists, and present the results using a Deep Neural Network (DNN) based skin image classifier.
Lossy image compression causes a loss of texture, especially at low bitrate. To mitigate this problem, we propose a novel image compression method that utilizes a reference-based image super-resolution model. We use t...
详细信息
ISBN:
(纸本)9781665448994
Lossy image compression causes a loss of texture, especially at low bitrate. To mitigate this problem, we propose a novel image compression method that utilizes a reference-based image super-resolution model. We use two image compression models and a self texture transfer model. The image compression models encode and decode a whole input image and selected reference patches. The reference patches are small but compressed with high quality. The self texture transfer model transfers the texture of reference patches into similar regions in the compressed image. The experimental results show that our method can reconstruct accurate texture by transferring the texture of reference patches.
暂无评论