咨询与建议

限定检索结果

文献类型

  • 5,349 篇 会议
  • 128 册 图书
  • 29 篇 期刊文献

馆藏范围

  • 5,506 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 2,747 篇 工学
    • 2,253 篇 计算机科学与技术...
    • 926 篇 软件工程
    • 478 篇 光学工程
    • 399 篇 控制科学与工程
    • 332 篇 机械工程
    • 261 篇 仪器科学与技术
    • 250 篇 信息与通信工程
    • 128 篇 电气工程
    • 122 篇 生物工程
    • 90 篇 生物医学工程(可授...
    • 70 篇 电子科学与技术(可...
    • 39 篇 安全科学与工程
    • 33 篇 化学工程与技术
    • 31 篇 建筑学
    • 27 篇 土木工程
    • 25 篇 交通运输工程
    • 24 篇 航空宇航科学与技...
  • 858 篇 理学
    • 526 篇 物理学
    • 439 篇 数学
    • 155 篇 统计学(可授理学、...
    • 133 篇 生物学
    • 28 篇 化学
    • 21 篇 系统科学
  • 242 篇 艺术学
    • 242 篇 设计学(可授艺术学...
  • 196 篇 管理学
    • 101 篇 图书情报与档案管...
    • 97 篇 管理科学与工程(可...
    • 27 篇 工商管理
  • 96 篇 医学
    • 96 篇 临床医学
    • 21 篇 基础医学(可授医学...
  • 28 篇 法学
    • 26 篇 社会学
  • 8 篇 教育学
  • 6 篇 经济学
  • 5 篇 农学
  • 2 篇 军事学

主题

  • 2,165 篇 computer vision
  • 915 篇 pattern recognit...
  • 890 篇 conferences
  • 640 篇 training
  • 565 篇 cameras
  • 410 篇 feature extracti...
  • 373 篇 computational mo...
  • 364 篇 image segmentati...
  • 350 篇 visualization
  • 338 篇 face recognition
  • 321 篇 computer archite...
  • 309 篇 robustness
  • 290 篇 computer science
  • 287 篇 shape
  • 280 篇 humans
  • 266 篇 object detection
  • 234 篇 layout
  • 196 篇 neural networks
  • 191 篇 application soft...
  • 191 篇 lighting

机构

  • 20 篇 swiss fed inst t...
  • 19 篇 institute for co...
  • 18 篇 university of sc...
  • 18 篇 microsoft resear...
  • 18 篇 swiss fed inst t...
  • 16 篇 carnegie mellon ...
  • 16 篇 chinese acad sci...
  • 14 篇 tsinghua univers...
  • 14 篇 univ sci & techn...
  • 14 篇 carnegie mellon ...
  • 12 篇 harbin inst tech...
  • 12 篇 tsinghua univ pe...
  • 12 篇 department of co...
  • 11 篇 megvii technol p...
  • 11 篇 computer vision ...
  • 11 篇 computer vision ...
  • 10 篇 indian statistic...
  • 10 篇 comp vis ctr bar...
  • 10 篇 school of comput...
  • 10 篇 univ modena & re...

作者

  • 58 篇 timofte radu
  • 17 篇 van gool luc
  • 17 篇 luc van gool
  • 17 篇 horst bischof
  • 16 篇 rita cucchiara
  • 16 篇 radu timofte
  • 14 篇 escalera sergio
  • 14 篇 bischof horst
  • 14 篇 sergio escalera
  • 13 篇 zhigang zhu
  • 13 篇 hugo jair escala...
  • 12 篇 murino vittorio
  • 12 篇 li stan z.
  • 12 篇 chen wei-ting
  • 12 篇 qiang ji
  • 11 篇 cucchiara rita
  • 11 篇 fan haoqiang
  • 11 篇 umapada pal
  • 11 篇 marcos v. conde
  • 11 篇 bowyer kevin w.

语言

  • 5,492 篇 英文
  • 10 篇 中文
  • 5 篇 其他
检索条件"任意字段=2006 Conference on Computer Vision and Pattern Recognition Workshops"
5506 条 记 录,以下是511-520 订阅
排序:
Few-Shot Image Classification Benchmarks are Too Far From Reality: Build Back Better with Semantic Task Sampling
Few-Shot Image Classification Benchmarks are Too Far From Re...
收藏 引用
IEEE/CVF conference on computer vision and pattern recognition (CVPR)
作者: Bennequin, Etienne Tami, Myriam Toubhans, Antoine Hudelot, Celine Univ Paris Saclay Cent Supelec Gif Sur Yvette France Sicara Paris France
Every day, a new method is published to tackle Few-Shot Image Classification, showing better and better performances on academic benchmarks. Nevertheless, we observe that these current benchmarks do not accurately rep... 详细信息
来源: 评论
Self-Supervised Normalizing Flows for Image Anomaly Detection and Localization
Self-Supervised Normalizing Flows for Image Anomaly Detectio...
收藏 引用
2023 IEEE/CVF conference on computer vision and pattern recognition workshops, CVPRW 2023
作者: Chiu, Li-Ling Lai, Shang-Hong National Tsing Hua University Department of Computer Science Taiwan
Image anomaly detection aims to detect out-of-distribution instances. Most existing methods treat anomaly detection as an unsupervised task because anomalous training data and labels are usually scarce or unavailable.... 详细信息
来源: 评论
Impact of Pseudo Depth on Open World Object Segmentation with Minimal User Guidance
Impact of Pseudo Depth on Open World Object Segmentation wit...
收藏 引用
2023 IEEE/CVF conference on computer vision and pattern recognition workshops, CVPRW 2023
作者: Schön, Robin Ludwig, Katja Lienhart, Rainer University of Augsburg Machine Learning and Computer Vision Germany
Pseudo depth maps are depth map predicitions which are used as ground truth during training. In this paper we leverage pseudo depth maps in order to segment objects of classes that have never been seen during training... 详细信息
来源: 评论
The 6th AI City Challenge
The 6th AI City Challenge
收藏 引用
IEEE/CVF conference on computer vision and pattern recognition (CVPR)
作者: Naphade, Milind Wang, Shuo Anastasiu, David C. Tang, Zheng Chang, Ming-Ching Yao, Yue Zheng, Liang Rahman, Mohammed Shaiqur Venkatachalapathy, Archana Sharma, Anuj Feng, Qi Ablavsky, Vitaly Sclaroff, Stan Chakraborty, Pranamesh Li, Alice Li, Shangru Chellappa, Rama NVIDIA Corp Santa Clara CA 95051 USA Santa Clara Univ Santa Clara CA 95053 USA SUNY Albany Albany NY 12222 USA Australian Natl Univ Canberra ACT Australia Indian Inst Technol Kanpur Kanpur Uttar Pradesh India Iowa State Univ Ames IA USA Boston Univ Boston MA 02215 USA Univ Washington Seattle WA 98195 USA Johns Hopkins Univ Baltimore MD 21218 USA
The 6th edition of the AI City Challenge specifically focuses on problems in two domains where there is tremendous unlocked potential at the intersection of computer vision and artificial intelligence: Intelligent Tra... 详细信息
来源: 评论
Robust Automatic Motorcycle Helmet Violation Detection for an Intelligent Transportation System
Robust Automatic Motorcycle Helmet Violation Detection for a...
收藏 引用
2023 IEEE/CVF conference on computer vision and pattern recognition workshops, CVPRW 2023
作者: Tran, Duong Nguyen-Ngoc Hoang Pham, Long Jeon, Hyung-Joon Nguyen, Huy-Hung Jeon, Hyung-Min Tran, Tai Huu-Phuong Jeon, Jae Wook Sungkyunkwan University Department of Electrical and Computer Engineering Suwon Korea Republic of
Video surveillance-based automatic detection of motorcycle helmet usage can enhance the effectiveness of educational and enforcement initiatives aimed at boosting road safety. Current detection methods, however, have ... 详细信息
来源: 评论
Asynchronous Federated Continual Learning
Asynchronous Federated Continual Learning
收藏 引用
2023 IEEE/CVF conference on computer vision and pattern recognition workshops, CVPRW 2023
作者: Shenaj, Donald Toldo, Marco Rigon, Alberto Zanuttigh, Pietro University of Padova Italy
The standard class-incremental continual learning setting assumes a set of tasks seen one after the other in a fixed and pre-defined order. This is not very realistic in federated learning environments where each clie... 详细信息
来源: 评论
Simulating Task-Free Continual Learning Streams from Existing Datasets
Simulating Task-Free Continual Learning Streams from Existin...
收藏 引用
2023 IEEE/CVF conference on computer vision and pattern recognition workshops, CVPRW 2023
作者: Chrysakis, Aristotelis Moens, Marie-Francine KU Leuven Department of Computer Science Leuven Belgium
Task-free continual learning is the subfield of machine learning that focuses on learning online from a stream whose distribution changes continuously over time. In contrast, previous works evaluate task-free continua... 详细信息
来源: 评论
Deep Dehazing Powered by Image Processing Network
Deep Dehazing Powered by Image Processing Network
收藏 引用
2023 IEEE/CVF conference on computer vision and pattern recognition workshops, CVPRW 2023
作者: Kim, Guisik Park, Jinhee Kwon, Junseok Chung-Ang University Korea Electronics Technology Institute Seoul Korea Republic of Chung-Ang University School of Computer Science and Engineering Seoul Korea Republic of
Image processing is a very fundamental technique in the field of low-level vision. However, with the development of deep learning over the past five years, most low-level vision methods tend to ignore this technique. ... 详细信息
来源: 评论
Self-Calibrated Efficient Transformer for Lightweight Super-Resolution
Self-Calibrated Efficient Transformer for Lightweight Super-...
收藏 引用
IEEE/CVF conference on computer vision and pattern recognition (CVPR)
作者: Zou, Wenbin Ye, Tian Zheng, Weixin Zhang, Yunchen Chen, Liang Wu, Yi Fujian Normal Univ Fujian Prov Key Lab Photon Technol Fuzhou Peoples R China Jimei Univ Sch Ocean Informat Engn Xiamen Peoples R China Fuzhou Univ Coll Phys & Informat Engn Fuzhou Peoples R China China Design Grp Co Ltd Nanjing Peoples R China
Recently, deep learning has been successfully applied to the single-image super-resolution (SISR) with remarkable performance. However, most existing methods focus on building a more complex network with a large numbe... 详细信息
来源: 评论
MANIQA: Multi-dimension Attention Network for No-Reference Image Quality Assessment
MANIQA: Multi-dimension Attention Network for No-Reference I...
收藏 引用
IEEE/CVF conference on computer vision and pattern recognition (CVPR)
作者: Yang, Sidi Wu, Tianhe Shi, Shuwei Lao, Shanshan Gong, Yuan Cao, Mingdeng Wang, Jiahao Yang, Yujiu Tsinghua Univ Tsinghua Shenzhen Int Grad Sch Shenzhen Peoples R China Tsinghua Univ Shenzhen Peoples R China
No-Reference Image Quality Assessment (NR-IQA) aims to assess the perceptual quality of images in accordance with human subjective perception. Unfortunately, existing NR-IQA methods are far from meeting the needs of p... 详细信息
来源: 评论