咨询与建议

限定检索结果

文献类型

  • 5,349 篇 会议
  • 147 册 图书
  • 28 篇 期刊文献

馆藏范围

  • 5,524 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 2,746 篇 工学
    • 2,252 篇 计算机科学与技术...
    • 926 篇 软件工程
    • 478 篇 光学工程
    • 399 篇 控制科学与工程
    • 332 篇 机械工程
    • 261 篇 仪器科学与技术
    • 250 篇 信息与通信工程
    • 128 篇 电气工程
    • 122 篇 生物工程
    • 90 篇 生物医学工程(可授...
    • 70 篇 电子科学与技术(可...
    • 39 篇 安全科学与工程
    • 33 篇 化学工程与技术
    • 31 篇 建筑学
    • 27 篇 土木工程
    • 25 篇 交通运输工程
    • 24 篇 航空宇航科学与技...
  • 858 篇 理学
    • 526 篇 物理学
    • 439 篇 数学
    • 155 篇 统计学(可授理学、...
    • 133 篇 生物学
    • 28 篇 化学
    • 21 篇 系统科学
  • 242 篇 艺术学
    • 242 篇 设计学(可授艺术学...
  • 196 篇 管理学
    • 101 篇 图书情报与档案管...
    • 97 篇 管理科学与工程(可...
    • 27 篇 工商管理
  • 96 篇 医学
    • 96 篇 临床医学
    • 21 篇 基础医学(可授医学...
  • 28 篇 法学
    • 26 篇 社会学
  • 8 篇 教育学
  • 6 篇 经济学
  • 5 篇 农学
  • 2 篇 军事学

主题

  • 2,164 篇 computer vision
  • 915 篇 pattern recognit...
  • 890 篇 conferences
  • 635 篇 training
  • 565 篇 cameras
  • 410 篇 feature extracti...
  • 373 篇 computational mo...
  • 364 篇 image segmentati...
  • 349 篇 visualization
  • 338 篇 face recognition
  • 321 篇 computer archite...
  • 299 篇 robustness
  • 290 篇 computer science
  • 285 篇 shape
  • 280 篇 humans
  • 266 篇 object detection
  • 228 篇 layout
  • 196 篇 neural networks
  • 191 篇 application soft...
  • 191 篇 lighting

机构

  • 26 篇 istituto italian...
  • 24 篇 google deepmind ...
  • 24 篇 meta ai barcelon...
  • 23 篇 politecnico di t...
  • 20 篇 swiss fed inst t...
  • 19 篇 institute for co...
  • 18 篇 university of sc...
  • 18 篇 microsoft resear...
  • 18 篇 swiss fed inst t...
  • 16 篇 carnegie mellon ...
  • 16 篇 chinese acad sci...
  • 14 篇 tsinghua univers...
  • 14 篇 univ sci & techn...
  • 14 篇 carnegie mellon ...
  • 12 篇 harbin inst tech...
  • 12 篇 tsinghua univ pe...
  • 12 篇 department of co...
  • 11 篇 megvii technol p...
  • 11 篇 computer vision ...
  • 11 篇 computer vision ...

作者

  • 58 篇 timofte radu
  • 25 篇 alessio del bue
  • 24 篇 cristian canton
  • 24 篇 tatiana tommasi
  • 20 篇 jordi pont-tuset
  • 17 篇 van gool luc
  • 17 篇 luc van gool
  • 17 篇 horst bischof
  • 17 篇 rita cucchiara
  • 17 篇 radu timofte
  • 14 篇 escalera sergio
  • 14 篇 bischof horst
  • 13 篇 zhigang zhu
  • 13 篇 hugo jair escala...
  • 12 篇 murino vittorio
  • 12 篇 li stan z.
  • 12 篇 chen wei-ting
  • 12 篇 huang thomas s.
  • 11 篇 cucchiara rita
  • 11 篇 fan haoqiang

语言

  • 5,510 篇 英文
  • 10 篇 中文
  • 5 篇 其他
检索条件"任意字段=2006 Conference on Computer Vision and Pattern Recognition Workshops"
5524 条 记 录,以下是611-620 订阅
Dilated Convolutional Transformer for High-Quality Image Deraining
Dilated Convolutional Transformer for High-Quality Image Der...
收藏 引用
2023 IEEE/CVF conference on computer vision and pattern recognition workshops, CVPRW 2023
作者: Li, Yufeng Lu, Jiyang Chen, Hongming Wu, Xianhao Chen, Xiang Shenyang Aerospace University College of Electronic and Information Engineering China Nanjing University of Science and Technology School of Computer Science and Engineering China
Convolutional neural networks (CNNs) and Transformers have achieved significant success in image signal processing. However, little effort has been made to effectively combine the properties of these two architectures... 详细信息
来源: 评论
Underwater Light Field Retention : Neural Rendering for Underwater Imaging
Underwater Light Field Retention : Neural Rendering for Unde...
收藏 引用
IEEE/CVF conference on computer vision and pattern recognition (CVPR)
作者: Ye, Tian Chen, Sixiang Liu, Yun Ye, Yi Chen, Erkang Li, Yuche Jimei Univ Sch Ocean Informat Engn Xiamen Peoples R China Southwest Univ Coll Artificial Intelligence Chongqing Peoples R China China Univ Petr Coll Geosci Beijing Peoples R China
Underwater Image Rendering aims to generate a true-to-life underwater image from a given clean one, which could be applied to various practical applications such as underwater image enhancement, camera filter, and vir... 详细信息
来源: 评论
A Data-Centric Solution to NonHomogeneous Dehazing via vision Transformer
A Data-Centric Solution to NonHomogeneous Dehazing via Visio...
收藏 引用
2023 IEEE/CVF conference on computer vision and pattern recognition workshops, CVPRW 2023
作者: Y., Liu H., Liu L., Li Z., Wu J., Chen McMaster University Hamilton Canada China Telecom Research Institute Shanghai China
Recent years have witnessed an increased interest in image dehazing. Many deep learning methods have been proposed to tackle this challenge, and have made significant accomplishments dealing with homogeneous haze. How... 详细信息
来源: 评论
NTIRE 2022 Spectral Demosaicing Challenge and Data Set
NTIRE 2022 Spectral Demosaicing Challenge and Data Set
收藏 引用
IEEE/CVF conference on computer vision and pattern recognition (CVPR)
作者: Arad, Boaz Timofte, Radu Yahel, Rony Morag, Nimrod Bernat, Amir Wu, Yaqi Wu, Xun Fan, Zhihao Xia, Chenjie Zhang, Feng Liu, Shuai Li, Yongqiang Feng, Chaoyu Lei, Lei Zhang, Mingwei Feng, Kai Zhang, Xun Yao, Jiaxin Zhao, Yongqiang Ma, Suina He, Fan Dong, Yangyang Yu, Shufang Qiu, Difa Liu, Jinhui Bi, Mengzhao Song, Beibei Sun, WenFang Zheng, Jiesi Zhao, Bowen Cao, Yanpeng Yang, Jiangxin Cao, Yanlong Kong, Xiangyu Yu, Jingbo Xue, Yuanyang Xie, Zheng Oddity Tech Ltd New York NY USA Voyage81 Ltd New York NY USA Univ Wurzburg Ctr Artificial Intelligence & Data Sci Wurzburg Germany Swiss Fed Inst Technol Computat Vision Lab Zurich Switzerland Acad Coll Tel Aviv Yaffo Tel Aviv Israel Tel Aviv Univ Tel Aviv Israel Harbin Inst Technol Harbin 150001 Peoples R China Tsinghua Univ Beijing 100084 Peoples R China Univ Shanghai Sci & Technol Shanghai 200093 Peoples R China Zhejiang Univ Hangzhou 310027 Peoples R China Xiaomi Inc Beijing Peoples R China Northwestern Polytech Univ Xian Peoples R China Changan Univ Xian Peoples R China Xidian Univ Xian Peoples R China Zhejiang Univ Sch Mech Engn State Key Lab Fluid Power & Mech Syst Hangzhou 310027 Peoples R China Zhejiang Univ Sch Mech Engn Key Lab Adv Mfg Technol Zhejiang Prov Hangzhou 310027 Peoples R China
This paper presents the first challenge on demosaicing of natural spectral images for snapshot hyperspectral imaging systems (HIS) which utilize a multi-spectral filer array (MSFA), i.e., the recovery of whole-scene h... 详细信息
来源: 评论
BeCAPTCHA-Type: Biometric Keystroke Data Generation for Improved Bot Detection
BeCAPTCHA-Type: Biometric Keystroke Data Generation for Impr...
收藏 引用
2023 IEEE/CVF conference on computer vision and pattern recognition workshops, CVPRW 2023
作者: Dealcala, Daniel Morales, Aythami Tolosana, Ruben Acien, Alejandro Fierrez, Julian Hernandez, Santiago Ferrer, Miguel A. Diaz, Moises Universidad Autonoma de Madrid Biometrics and Data Pattern Analytics Lab Spain University Las Palmas Gran Canaria Spain
This work proposes a data driven learning model for the synthesis of keystroke biometric data. The proposed method is compared with two statistical approaches based on Universal and User-dependent models. These approa... 详细信息
来源: 评论
CrisisHateMM: Multimodal Analysis of Directed and Undirected Hate Speech in Text-Embedded Images from Russia-Ukraine Conflict
CrisisHateMM: Multimodal Analysis of Directed and Undirected...
收藏 引用
2023 IEEE/CVF conference on computer vision and pattern recognition workshops, CVPRW 2023
作者: Bhandari, Aashish Shah, Siddhant B. Thapa, Surendrabikram Naseem, Usman Nasim, Mehwish Delhi Technological University Department of CSE India Virginia Tech Department of Computer Science United States School of Computer Science The University of Sydney Australia School of Physics Mathematics and Computing The University of Western Australia Australia College of Science and Engineering Flinders University Australia
Text-embedded images are frequently used on social media to convey opinions and emotions, but they can also be a medium for disseminating hate speech, propaganda, and extremist ideologies. During the Russia-Ukraine wa... 详细信息
来源: 评论
Exposing and Mitigating Spurious Correlations for Cross-Modal Retrieval
Exposing and Mitigating Spurious Correlations for Cross-Moda...
收藏 引用
2023 IEEE/CVF conference on computer vision and pattern recognition workshops, CVPRW 2023
作者: Kim, Jae Myung Sophia Koepke, A. Schmid, Cordelia Akata, Zeynep University of Tübingen Germany PSL Research University Inria Ecole Normale Supérieure CNRS France MPI for Intelligent Systems Germany
Cross-modal retrieval methods are the preferred tool to search databases for the text that best matches a query image and vice versa. However, image-text retrieval models commonly learn to memorize spurious correlatio... 详细信息
来源: 评论
An Interpretable Deep Learning Approach for Morphological Script Type Analysis
An Interpretable Deep Learning Approach for Morphological Sc...
收藏 引用
18th International conference on Document Analysis and recognition (ICDAR)
作者: Vlachou-Efstathiou, Malamatenia Siglidis, Ioannis Stutzmann, Dominique Aubry, Mathieu Inst Rech & Hist Textes Paris Ile De France France Univ Gustave Eiffel CNRS Ecole Ponts LIGM Marne La Vallee France
Defining script types and establishing classification criteria for medieval handwriting is a central aspect of palaeographical analysis. However, existing typologies often encounter methodological challenges, such as ... 详细信息
来源: 评论
Surveillance Face Presentation Attack Detection Challenge
Surveillance Face Presentation Attack Detection Challenge
收藏 引用
2023 IEEE/CVF conference on computer vision and pattern recognition workshops, CVPRW 2023
作者: Fang, Hao Liu, Ajian Wan, Jun Escalera, Sergio Escalante, Hugo Jair Lei, Zhen University of Chinese Academy of Sciences School of Artificial Intelligence Beijing China Chinese Academy of Sciences Mais Institute of Automation Beijing China Universitat de Barcelona Computer Vision Center Catalonia Barcelona Spain Óptica y Electrónica JInstituto Nacional de Astrofísica Puebla Mexico Cair Hkisi Cas
Face Anti-spoofing (FAS) is essential to secure face recognition systems from various physical attacks. However, most of the studies lacked consideration of long-distance scenarios. Specifically, compared with FAS in ... 详细信息
来源: 评论
NTIRE 2022 Challenge on Night Photography Rendering
NTIRE 2022 Challenge on Night Photography Rendering
收藏 引用
IEEE/CVF conference on computer vision and pattern recognition (CVPR)
作者: Ershov, Egor Savchik, Alex Shepelev, Denis Banic, Nikola Brown, Michael S. Timofte, Radu Koscevic, Karlo Freeman, Michael Tesalin, Vasily Bocharov, Dmitry Semenkov, Illya Subasic, Marko Loncaric, Sven Terekhin, Arseniy Liu, Shuai Feng, Chaoyu Wang, Hao Zhu, Ran Li, Yongqiang Lei, Lei Li, Zhihao Yi, Si Han, Ling-Hao Wu, Ruiqi Jin, Xin Guo, Chunle Kinli, Furkan Mentes, Sami Ozcan, Baris Kirac, Furkan Zini, Simone Rota, Claudio Buzzelli, Marco Bianco, Simone Schettini, Raimondo Li, Wei Ma, Yipeng Wang, Tao Xu, Ruikang Song, Fenglong Chen, Wei-Ting Yang, Hao-Hsiang Huang, Zhi-Kai Chang, Hua-En Kuo, Sy-Yen Liang, Zhexin Zhou, Shangchen Feng, Ruicheng Li, Chongyi Chen, Xiangyu Song, Binbin Zhang, Shile Liu, Lin Wang, Zhendong Ryu, Dohoon Bae, Hyokyoung Kwon, Taesung Desai, Chaitra Akalwadi, Nikhil Joshi, Amogh Mandi, Chinmayee Malagi, Sampada Uppin, Akash Reddy, Sai Sudheer Tabib, Ramesh Ashok Patil, Ujwala Mudenagudi, Uma Kharkevich Inst Inst Informat Transmiss Problems Moscow Russia Gideon Bros Osijek Croatia York Univ Toronto ON Canada Swiss Fed Inst Technol Zurich Zurich Switzerland Univ Wurzburg Wurzburg Germany Univ Zagreb Fac Elect Engn & Comp Zagreb Croatia Michael Freeman Photog London England Xiaomi Inc Beijing Peoples R China Nanjing Univ Nanjing Peoples R China Nankai Univ Tianjin Peoples R China Wuhan Univ Technol Wuhan Peoples R China Ozyegin Univ Istanbul Turkey Univ Milano Bicocca Milan Italy Huawei Noahs Ark Lab Montreal PQ Canada Natl Taiwan Univ Grad Inst Elect Engn New Taipei Taiwan Natl Taiwan Univ Dept Elect Engn New Taipei Taiwan Nanyang Technol Univ Singapore Singapore Univ Macau Taipa Macao Peoples R China Univ Sci & Technol China Hefei Peoples R China Korea Adv Inst Sci & Technol Daejeon South Korea KLE Technol Univ Ctr Excellence Visual Intelligence CEVI Hubballi Karnataka India
This paper reviews the NTIRE 2022 challenge on night photography rendering. The challenge solicited solutions that processed RAW camera images captured in night scenes to produce a photo-finished output image encoded ... 详细信息
来源: 评论