咨询与建议

限定检索结果

文献类型

  • 5,349 篇 会议
  • 128 册 图书
  • 29 篇 期刊文献

馆藏范围

  • 5,506 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 2,747 篇 工学
    • 2,253 篇 计算机科学与技术...
    • 926 篇 软件工程
    • 478 篇 光学工程
    • 399 篇 控制科学与工程
    • 332 篇 机械工程
    • 261 篇 仪器科学与技术
    • 250 篇 信息与通信工程
    • 128 篇 电气工程
    • 122 篇 生物工程
    • 90 篇 生物医学工程(可授...
    • 70 篇 电子科学与技术(可...
    • 39 篇 安全科学与工程
    • 33 篇 化学工程与技术
    • 31 篇 建筑学
    • 27 篇 土木工程
    • 25 篇 交通运输工程
    • 24 篇 航空宇航科学与技...
  • 858 篇 理学
    • 526 篇 物理学
    • 439 篇 数学
    • 155 篇 统计学(可授理学、...
    • 133 篇 生物学
    • 28 篇 化学
    • 21 篇 系统科学
  • 242 篇 艺术学
    • 242 篇 设计学(可授艺术学...
  • 196 篇 管理学
    • 101 篇 图书情报与档案管...
    • 97 篇 管理科学与工程(可...
    • 27 篇 工商管理
  • 96 篇 医学
    • 96 篇 临床医学
    • 21 篇 基础医学(可授医学...
  • 28 篇 法学
    • 26 篇 社会学
  • 8 篇 教育学
  • 6 篇 经济学
  • 5 篇 农学
  • 2 篇 军事学

主题

  • 2,165 篇 computer vision
  • 915 篇 pattern recognit...
  • 890 篇 conferences
  • 640 篇 training
  • 565 篇 cameras
  • 410 篇 feature extracti...
  • 373 篇 computational mo...
  • 364 篇 image segmentati...
  • 350 篇 visualization
  • 338 篇 face recognition
  • 321 篇 computer archite...
  • 309 篇 robustness
  • 290 篇 computer science
  • 287 篇 shape
  • 280 篇 humans
  • 266 篇 object detection
  • 234 篇 layout
  • 196 篇 neural networks
  • 191 篇 application soft...
  • 191 篇 lighting

机构

  • 20 篇 swiss fed inst t...
  • 19 篇 institute for co...
  • 18 篇 university of sc...
  • 18 篇 microsoft resear...
  • 18 篇 swiss fed inst t...
  • 16 篇 carnegie mellon ...
  • 16 篇 chinese acad sci...
  • 14 篇 tsinghua univers...
  • 14 篇 univ sci & techn...
  • 14 篇 carnegie mellon ...
  • 12 篇 harbin inst tech...
  • 12 篇 tsinghua univ pe...
  • 12 篇 department of co...
  • 11 篇 megvii technol p...
  • 11 篇 computer vision ...
  • 11 篇 computer vision ...
  • 10 篇 indian statistic...
  • 10 篇 comp vis ctr bar...
  • 10 篇 school of comput...
  • 10 篇 univ modena & re...

作者

  • 58 篇 timofte radu
  • 17 篇 van gool luc
  • 17 篇 luc van gool
  • 17 篇 horst bischof
  • 16 篇 rita cucchiara
  • 16 篇 radu timofte
  • 14 篇 escalera sergio
  • 14 篇 bischof horst
  • 14 篇 sergio escalera
  • 13 篇 zhigang zhu
  • 13 篇 hugo jair escala...
  • 12 篇 murino vittorio
  • 12 篇 li stan z.
  • 12 篇 chen wei-ting
  • 12 篇 qiang ji
  • 11 篇 cucchiara rita
  • 11 篇 fan haoqiang
  • 11 篇 umapada pal
  • 11 篇 marcos v. conde
  • 11 篇 bowyer kevin w.

语言

  • 5,492 篇 英文
  • 10 篇 中文
  • 5 篇 其他
检索条件"任意字段=2006 Conference on Computer Vision and Pattern Recognition Workshops"
5506 条 记 录,以下是691-700 订阅
排序:
Deep Graphics Encoder for Real-Time Video Makeup Synthesis from Example
Deep Graphics Encoder for Real-Time Video Makeup Synthesis f...
收藏 引用
IEEE/CVF conference on computer vision and pattern recognition (CVPR)
作者: Kips, Robin Jiang, Ruowei Ba, Sileye Phung, Edmund Aarabi, Parham Gori, Pietro Perrot, Matthieu Bloch, Isabelle LOreal Res & Innovat Clichy France Inst Polytech Paris Telecom Paris LTCI Paris France Modiface Toronto ON Canada Sorbonne Univ CNRS LIP6 Paris France
While makeup virtual-try-on is now widespread, parametrizing a computer graphics rendering engine for synthesizing images of a given cosmetics product remains a challenging task. In this paper, we introduce an inverse... 详细信息
来源: 评论
Segment Anything in Food Images
Segment Anything in Food Images
收藏 引用
IEEE computer Society conference on computer vision and pattern recognition workshops (CVPRW)
作者: Saeed S. Alahmari Michael Gardner Tawfiq Salem Najran University Saudi Arabia King Faisal University Saudi Arabia Purdue University USA
This paper introduces a new approach for food image segmentation utilizing the Segment Anything Model (SAM), with the additional refinement achieved through fine-tuning with Low-Rank Adaptation layers (LoRA). The segm... 详细信息
来源: 评论
T-DEED: Temporal-Discriminability Enhancer Encoder-Decoder for Precise Event Spotting in Sports Videos
T-DEED: Temporal-Discriminability Enhancer Encoder-Decoder f...
收藏 引用
IEEE computer Society conference on computer vision and pattern recognition workshops (CVPRW)
作者: Artur Xarles Sergio Escalera Thomas B. Moeslund Albert Clapés Universitat de Barcelona Spain Computer Vision Center Spain Aalborg University Denmark
In this paper, we introduce T-DEED, a Temporal-Discriminability Enhancer Encoder-Decoder for Precise Event Spotting in sports videos. T-DEED addresses multiple challenges in the task, including the need for discrimina... 详细信息
来源: 评论
Reconsidering CO2 emissions from computer vision
Reconsidering CO2 emissions from Computer Vision
收藏 引用
IEEE/CVF conference on computer vision and pattern recognition (CVPR)
作者: Fu, Andre Hosseini, Mahdi S. Plataniotis, Konstantinos N. Univ Toronto Toronto ON Canada Univ New Brunswick Fredericton NB Canada
Climate change is a pressing issue that is currently affecting and will affect every part of our lives. It's becoming incredibly vital we, as a society, address the climate crisis as a universal effort, including ... 详细信息
来源: 评论
Fuse-PN: A Novel Architecture for Anomaly pattern Segmentation in Aerial Agricultural Images
Fuse-PN: A Novel Architecture for Anomaly Pattern Segmentati...
收藏 引用
IEEE/CVF conference on computer vision and pattern recognition (CVPR)
作者: Innani, Shubham Dutande, Prasad Baheti, Bhakti Talbar, Sanjay Baid, Ujjwal SGGS Inst Engn & Technol Ctr Excellence Signal & Image Proc Nanded 431606 India
Deep learning and pattern recognition in smart farming has seen rapid growth as a building bridge between crop science and computer vision. One of the important application is anomaly segmentation in agriculture like ... 详细信息
来源: 评论
Dissecting the High-Frequency Bias in Convolutional Neural Networks
Dissecting the High-Frequency Bias in Convolutional Neural N...
收藏 引用
IEEE/CVF conference on computer vision and pattern recognition (CVPR)
作者: Abello, Antonio A. Hirata Jr, Roberto Wang, Zhangyang Univ Sao Paulo Butanta Sao Paulo SP Brazil Univ Texas Austin Austin TX 78712 USA
For convolutional neural networks (CNNs), a common hypothesis that explains both their generalization capability and their characteristic brittleness is that these models are implicitly regularized to rely on impercep... 详细信息
来源: 评论
Live Demonstration: Incremental Motion Estimation for Event-based Cameras by Dispersion Minimisation
Live Demonstration: Incremental Motion Estimation for Event-...
收藏 引用
IEEE/CVF conference on computer vision and pattern recognition (CVPR)
作者: Nunes, Urbano Miguel Demiris, Yiannis Imperial Coll London Personal Robot Lab London England
Live demonstration setup. (Left) The setup consists of a DAVIS346B event camera connected to a standard consumer laptop and undergoes some motion. (Right) The motion estimates are plotted in red and, for rotation-like... 详细信息
来源: 评论
Multimodal Understanding of Memes with Fair Explanations
Multimodal Understanding of Memes with Fair Explanations
收藏 引用
IEEE computer Society conference on computer vision and pattern recognition workshops (CVPRW)
作者: Yang Zhong Bhiman Kumar Baghel Department of Computer Science University of Pittsburgh PA USA
Digital Memes have been widely utilized in people’s daily lives over social media platforms. Composed of images and descriptive texts, memes are often distributed with the flair of sarcasm or humor, yet can also spre... 详细信息
来源: 评论
Modeling Fashion Compatibility with Explanation by using Bidirectional LSTM
Modeling Fashion Compatibility with Explanation by using Bid...
收藏 引用
IEEE/CVF conference on computer vision and pattern recognition (CVPR)
作者: Pang Kaicheng Zou Xingxing Wong, Wai Keung Hong Kong Polytech Univ Inst Text & Clothing Hong Kong Peoples R China Lab Artificial Intelligence Design Hong Kong Peoples R China
The goal of this paper is to model the fashion compatibility of an outfit and provide the explanations. We first extract features of all attributes of all items via convolutional neural networks, and then train the bi... 详细信息
来源: 评论
One-Shot GAN: Learning to Generate Samples from Single Images and Videos
One-Shot GAN: Learning to Generate Samples from Single Image...
收藏 引用
IEEE/CVF conference on computer vision and pattern recognition (CVPR)
作者: Sushko, Vadim Gall, Juergen Khoreva, Anna Bosch Ctr Artificial Intelligence Stuttgart Germany Univ Bonn Bonn Germany
Training GANs in low-data regimes remains a challenge, as overfitting often leads to memorization or training divergence. In this work, we introduce One-Shot GAN that can learn to generate samples from a training set ... 详细信息
来源: 评论