咨询与建议

限定检索结果

文献类型

  • 5,349 篇 会议
  • 128 册 图书
  • 29 篇 期刊文献

馆藏范围

  • 5,506 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 2,747 篇 工学
    • 2,253 篇 计算机科学与技术...
    • 926 篇 软件工程
    • 478 篇 光学工程
    • 399 篇 控制科学与工程
    • 332 篇 机械工程
    • 261 篇 仪器科学与技术
    • 250 篇 信息与通信工程
    • 128 篇 电气工程
    • 122 篇 生物工程
    • 90 篇 生物医学工程(可授...
    • 70 篇 电子科学与技术(可...
    • 39 篇 安全科学与工程
    • 33 篇 化学工程与技术
    • 31 篇 建筑学
    • 27 篇 土木工程
    • 25 篇 交通运输工程
    • 24 篇 航空宇航科学与技...
  • 858 篇 理学
    • 526 篇 物理学
    • 439 篇 数学
    • 155 篇 统计学(可授理学、...
    • 133 篇 生物学
    • 28 篇 化学
    • 21 篇 系统科学
  • 242 篇 艺术学
    • 242 篇 设计学(可授艺术学...
  • 196 篇 管理学
    • 101 篇 图书情报与档案管...
    • 97 篇 管理科学与工程(可...
    • 27 篇 工商管理
  • 96 篇 医学
    • 96 篇 临床医学
    • 21 篇 基础医学(可授医学...
  • 28 篇 法学
    • 26 篇 社会学
  • 8 篇 教育学
  • 6 篇 经济学
  • 5 篇 农学
  • 2 篇 军事学

主题

  • 2,165 篇 computer vision
  • 915 篇 pattern recognit...
  • 890 篇 conferences
  • 640 篇 training
  • 565 篇 cameras
  • 410 篇 feature extracti...
  • 373 篇 computational mo...
  • 364 篇 image segmentati...
  • 350 篇 visualization
  • 338 篇 face recognition
  • 321 篇 computer archite...
  • 309 篇 robustness
  • 290 篇 computer science
  • 287 篇 shape
  • 280 篇 humans
  • 266 篇 object detection
  • 234 篇 layout
  • 196 篇 neural networks
  • 191 篇 application soft...
  • 191 篇 lighting

机构

  • 20 篇 swiss fed inst t...
  • 19 篇 institute for co...
  • 18 篇 university of sc...
  • 18 篇 microsoft resear...
  • 18 篇 swiss fed inst t...
  • 16 篇 carnegie mellon ...
  • 16 篇 chinese acad sci...
  • 14 篇 tsinghua univers...
  • 14 篇 univ sci & techn...
  • 14 篇 carnegie mellon ...
  • 12 篇 harbin inst tech...
  • 12 篇 tsinghua univ pe...
  • 12 篇 department of co...
  • 11 篇 megvii technol p...
  • 11 篇 computer vision ...
  • 11 篇 computer vision ...
  • 10 篇 indian statistic...
  • 10 篇 comp vis ctr bar...
  • 10 篇 school of comput...
  • 10 篇 univ modena & re...

作者

  • 58 篇 timofte radu
  • 17 篇 van gool luc
  • 17 篇 luc van gool
  • 17 篇 horst bischof
  • 16 篇 rita cucchiara
  • 16 篇 radu timofte
  • 14 篇 escalera sergio
  • 14 篇 bischof horst
  • 14 篇 sergio escalera
  • 13 篇 zhigang zhu
  • 13 篇 hugo jair escala...
  • 12 篇 murino vittorio
  • 12 篇 li stan z.
  • 12 篇 chen wei-ting
  • 12 篇 qiang ji
  • 11 篇 cucchiara rita
  • 11 篇 fan haoqiang
  • 11 篇 umapada pal
  • 11 篇 marcos v. conde
  • 11 篇 bowyer kevin w.

语言

  • 5,492 篇 英文
  • 10 篇 中文
  • 5 篇 其他
检索条件"任意字段=2006 Conference on Computer Vision and Pattern Recognition Workshops"
5506 条 记 录,以下是721-730 订阅
排序:
Sketch-QNet: A Quadruplet ConvNet for Color Sketch-based Image Retrieval
Sketch-QNet: A Quadruplet ConvNet for Color Sketch-based Ima...
收藏 引用
IEEE/CVF conference on computer vision and pattern recognition (CVPR)
作者: Fuentes, Anibal Saavedra, Jose M. Impresee Inc 600 Calif St San Francisco CA 94108 USA
Architectures based on siamese networks with triplet loss have shown outstanding performance on the image-based similarity search problem. This approach attempts to discriminate between positive (relevant) and negativ... 详细信息
来源: 评论
Dressing in Order: Recurrent Person Image Generation for Pose Transfer, Virtual Try-on and Outfit Editing
Dressing in Order: Recurrent Person Image Generation for Pos...
收藏 引用
IEEE/CVF conference on computer vision and pattern recognition (CVPR)
作者: Cui, Aiyu McKee, Daniel Lazebnik, Svetlana Univ Illinois Champaign IL 61820 USA
We propose a flexible person generation framework called Dressing in Order (DiOr), which supports 2D pose transfer, virtual try-on, and several fashion editing tasks. The key to DiOr is a novel recurrent generation pi... 详细信息
来源: 评论
Private-Shared Disentangled Multimodal VAE for Learning of Latent Representations
Private-Shared Disentangled Multimodal VAE for Learning of L...
收藏 引用
IEEE/CVF conference on computer vision and pattern recognition (CVPR)
作者: Lee, Mihee Pavlovic, Vladimir Rutgers State Univ Piscataway NJ 08854 USA
Multi-modal generative models represent an important family of deep models, whose goal is to facilitate representation learning on data with multiple views or modalities. However, current deep multi-modal models focus... 详细信息
来源: 评论
ALPS: Adaptive Quantization of Deep Neural Networks with GeneraLized PositS
ALPS: Adaptive Quantization of Deep Neural Networks with Gen...
收藏 引用
IEEE/CVF conference on computer vision and pattern recognition (CVPR)
作者: Langroudi, Hamed F. Karia, Vedant Carmichael, Zachariah Zyarah, Abdullah Pandit, Tej Gustafson, John L. Kudithipudi, Dhireesha Univ Texas San Antonio Neuromorph AI Lab San Antonio TX 78249 USA Rochester Inst Technol Rochester NY 14623 USA Natl Univ Singapore Singapore Singapore
In this paper, a new adaptive quantization algorithm for generalized posit format is presented, to optimally represent the dynamic range and distribution of deep neural network parameters. Adaptation is achieved by mi... 详细信息
来源: 评论
MVFuseNet: Improving End-to-End Object Detection and Motion Forecasting through Multi-View Fusion of LiDAR Data
MVFuseNet: Improving End-to-End Object Detection and Motion ...
收藏 引用
IEEE/CVF conference on computer vision and pattern recognition (CVPR)
作者: Laddha, Ankit Gautam, Shivam Palombo, Stefan Pandey, Shreyash Vallespi-Gonzalez, Carlos Aurora Innovat Mountain View CA 94043 USA
In this work, we propose MVFuseNet, a novel end-to-end method for joint object detection and motion forecasting from a temporal sequence of LiDAR data. Most existing methods operate in a single view by projecting data... 详细信息
来源: 评论
Dealing with Missing Modalities in the Visual Question Answer-Difference Prediction Task through Knowledge Distillation
Dealing with Missing Modalities in the Visual Question Answe...
收藏 引用
IEEE/CVF conference on computer vision and pattern recognition (CVPR)
作者: Cho, Jae Won Kim, Dong-Jin Choi, Jinsoo Jung, Yunjae Kweon, In So Korea Adv Inst Sci & Technol Daejeon South Korea
In this work, we address the issues of the missing modalities that have arisen from the Visual Question Answer-Difference prediction task and find a novel method to solve the task at hand. We address the missing modal... 详细信息
来源: 评论
IrrNet: Spatio-Temporal Segmentation guided Classification for Irrigation Mapping
IrrNet: Spatio-Temporal Segmentation guided Classification f...
收藏 引用
IEEE computer Society conference on computer vision and pattern recognition workshops (CVPRW)
作者: Oishee Bintey Hoque Department of Computer Science University of Virginia VA USA
Irrigation systems can vary widely in scale, from smallscale subsistence farming to large commercial agriculture (see Fig. 1 ). The heterogeneity in irrigation practices and systems across different regions adds to th... 详细信息
来源: 评论
An Empty Room is All We Want: Automatic Defurnishing of Indoor Panoramas
An Empty Room is All We Want: Automatic Defurnishing of Indo...
收藏 引用
IEEE computer Society conference on computer vision and pattern recognition workshops (CVPRW)
作者: Mira Slavcheva Dave Gausebeck Kevin Chen David Buchhofer Azwad Sabik Chen Ma Sachal Dhillon Olaf Brandt Alan Dolhasz Matterport
We propose a pipeline that leverages Stable Diffusion to improve inpainting results in the context of defurnishing—the removal of furniture items from indoor panorama images. Specifically, we illustrate how increased... 详细信息
来源: 评论
Shot in the Dark: Few-Shot Learning with No Base-Class Labels
Shot in the Dark: Few-Shot Learning with No Base-Class Label...
收藏 引用
IEEE/CVF conference on computer vision and pattern recognition (CVPR)
作者: Chen, Zitian Maji, Subhransu Learned-Miller, Erik Univ Massachusetts Amherst Amherst MA 01003 USA
Few-shot learning aims to build classifiers for new classes from a small number of labeled examples and is commonly facilitated by access to examples from a distinct set of 'base classes'. The difference in da... 详细信息
来源: 评论
Dual Contrastive Learning for Unsupervised Image-to-Image Translation
Dual Contrastive Learning for Unsupervised Image-to-Image Tr...
收藏 引用
IEEE/CVF conference on computer vision and pattern recognition (CVPR)
作者: Han, Junlin Shoeiby, Mehrdad Petersson, Lars Armin, Mohammad Ali DATA61 CSIRO Canberra ACT Australia Australian Natl Univ Canberra ACT Australia
Unsupervised image-to-image translation tasks aim to find a mapping between a source domain X and a target domain Y from unpaired training data. Contrastive learning for Unpaired image-to-image Translation (CUT) yield... 详细信息
来源: 评论