咨询与建议

限定检索结果

文献类型

  • 5,349 篇 会议
  • 129 册 图书
  • 29 篇 期刊文献

馆藏范围

  • 5,507 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 2,748 篇 工学
    • 2,253 篇 计算机科学与技术...
    • 926 篇 软件工程
    • 478 篇 光学工程
    • 399 篇 控制科学与工程
    • 332 篇 机械工程
    • 262 篇 仪器科学与技术
    • 250 篇 信息与通信工程
    • 128 篇 电气工程
    • 122 篇 生物工程
    • 90 篇 生物医学工程(可授...
    • 70 篇 电子科学与技术(可...
    • 39 篇 安全科学与工程
    • 33 篇 化学工程与技术
    • 31 篇 建筑学
    • 27 篇 土木工程
    • 25 篇 交通运输工程
    • 24 篇 航空宇航科学与技...
  • 859 篇 理学
    • 526 篇 物理学
    • 439 篇 数学
    • 155 篇 统计学(可授理学、...
    • 133 篇 生物学
    • 28 篇 化学
    • 22 篇 系统科学
  • 242 篇 艺术学
    • 242 篇 设计学(可授艺术学...
  • 196 篇 管理学
    • 101 篇 图书情报与档案管...
    • 97 篇 管理科学与工程(可...
    • 27 篇 工商管理
  • 96 篇 医学
    • 96 篇 临床医学
    • 21 篇 基础医学(可授医学...
  • 28 篇 法学
    • 26 篇 社会学
  • 8 篇 教育学
  • 6 篇 经济学
  • 5 篇 农学
  • 2 篇 军事学

主题

  • 2,165 篇 computer vision
  • 915 篇 pattern recognit...
  • 890 篇 conferences
  • 640 篇 training
  • 565 篇 cameras
  • 410 篇 feature extracti...
  • 373 篇 computational mo...
  • 364 篇 image segmentati...
  • 350 篇 visualization
  • 338 篇 face recognition
  • 321 篇 computer archite...
  • 309 篇 robustness
  • 290 篇 computer science
  • 287 篇 shape
  • 280 篇 humans
  • 266 篇 object detection
  • 234 篇 layout
  • 196 篇 neural networks
  • 191 篇 application soft...
  • 191 篇 lighting

机构

  • 20 篇 swiss fed inst t...
  • 19 篇 institute for co...
  • 18 篇 university of sc...
  • 18 篇 microsoft resear...
  • 18 篇 swiss fed inst t...
  • 16 篇 carnegie mellon ...
  • 16 篇 chinese acad sci...
  • 14 篇 tsinghua univers...
  • 14 篇 univ sci & techn...
  • 14 篇 carnegie mellon ...
  • 12 篇 harbin inst tech...
  • 12 篇 tsinghua univ pe...
  • 12 篇 department of co...
  • 11 篇 megvii technol p...
  • 11 篇 computer vision ...
  • 11 篇 computer vision ...
  • 10 篇 indian statistic...
  • 10 篇 comp vis ctr bar...
  • 10 篇 school of comput...
  • 10 篇 univ modena & re...

作者

  • 58 篇 timofte radu
  • 17 篇 van gool luc
  • 17 篇 luc van gool
  • 17 篇 horst bischof
  • 16 篇 rita cucchiara
  • 16 篇 radu timofte
  • 14 篇 escalera sergio
  • 14 篇 bischof horst
  • 14 篇 sergio escalera
  • 13 篇 zhigang zhu
  • 13 篇 hugo jair escala...
  • 12 篇 murino vittorio
  • 12 篇 li stan z.
  • 12 篇 chen wei-ting
  • 12 篇 qiang ji
  • 11 篇 cucchiara rita
  • 11 篇 fan haoqiang
  • 11 篇 umapada pal
  • 11 篇 marcos v. conde
  • 11 篇 bowyer kevin w.

语言

  • 5,493 篇 英文
  • 10 篇 中文
  • 5 篇 其他
检索条件"任意字段=2006 Conference on Computer Vision and Pattern Recognition Workshops"
5507 条 记 录,以下是791-800 订阅
排序:
LoL-V2T: Large-Scale Esports Video Description Dataset
LoL-V2T: Large-Scale Esports Video Description Dataset
收藏 引用
IEEE/CVF conference on computer vision and pattern recognition (CVPR)
作者: Tanaka, Tsunehiko Simo-Serra, Edgar Waseda Univ Tokyo Japan
Esports is a fastest-growing new field with a largely online-presence, and is creating a demand for automatic domain-specific captioning tools. However, at the current time, there are few approaches that tackle the es... 详细信息
来源: 评论
Single View Geocentric Pose in the Wild
Single View Geocentric Pose in the Wild
收藏 引用
IEEE/CVF conference on computer vision and pattern recognition (CVPR)
作者: Christie, Gordon Foster, Kevin Hagstrom, Shea Hager, Gregory D. Brown, Myron Z. Johns Hopkins Univ Appl Phys Lab Baltimore MD 21218 USA Johns Hopkins Univ Dept Comp Sci Baltimore MD 21218 USA
Current methods for Earth observation tasks such as semantic mapping, map alignment, and change detection rely on near-nadir images;however, often the first available images in response to dynamic world events such as... 详细信息
来源: 评论
SkipPLUS: Skip the First Few Layers to Better Explain vision Transformers
SkipPLUS: Skip the First Few Layers to Better Explain Vision...
收藏 引用
IEEE computer Society conference on computer vision and pattern recognition workshops (CVPRW)
作者: Faridoun Mehri Mohsen Fayyaz Mahdieh Soleymani Baghshah Mohammad Taher Pilehvar Sharif University of Technology Iran University of Tehran Iran Cardiff University UK
Despite their remarkable performance, the explainability of vision Transformers (ViTs) remains a challenge. While forward attention-based token attribution techniques have become popular in text processing, their suit... 详细信息
来源: 评论
Long-Tailed recognition of SAR Aerial View Objects by Cascading and Paralleling Experts
Long-Tailed Recognition of SAR Aerial View Objects by Cascad...
收藏 引用
IEEE/CVF conference on computer vision and pattern recognition (CVPR)
作者: Yang, Cheng-Yen Hsu, Hung-Min Cai, Jiarui Hwang, Jenq-Neng Univ Washington Dept Elect & Comp Engn Seattle WA 98195 USA
Aerial View Object Classification (AVOC) has started to adopt deep learning approaches with significant success in recent years, but limited to optical data. On the other hand, Synthetic Aperture Radar (SAR) has wild ... 详细信息
来源: 评论
Deep Fusion of Appearance and Frame Differencing for Motion Segmentation
Deep Fusion of Appearance and Frame Differencing for Motion ...
收藏 引用
IEEE/CVF conference on computer vision and pattern recognition (CVPR)
作者: Ellenfeld, Marc Moosbauer, Sebastian Cardenes, Ruben Klauck, Ulrich Teutsch, Michael Hensoldt Optron GmbH Oberkochen Germany Hensoldt Analyt GmbH Oberkochen Germany Aalen Univ Appl Sci Aalen Germany Univ Western Cape Cape Town South Africa
Motion segmentation is a technique to detect and localize class-agnostic motion in videos. This motion is assumed to be relative to a stationary background and usually originates from objects such as vehicles or human... 详细信息
来源: 评论
Scaled 360 layouts: Revisiting non-central panoramas
Scaled 360 layouts: Revisiting non-central panoramas
收藏 引用
IEEE/CVF conference on computer vision and pattern recognition (CVPR)
作者: Berenguel-Baeta, Bruno Bermudez-Cameo, Jesus Guerrero, Jose J. Univ Zaragoza I3A Zaragoza Spain
From a non-central panorama, 3D lines can be recovered by geometric reasoning. However, their sensitivity to noise and the complex geometric modeling required has led these panoramas being very little investigated. In... 详细信息
来源: 评论
Practical Cross-modal Manifold Alignment for Robotic Grounded Language Learning
Practical Cross-modal Manifold Alignment for Robotic Grounde...
收藏 引用
IEEE/CVF conference on computer vision and pattern recognition (CVPR)
作者: Nguyen, Andre T. Richards, Luke E. Kebe, Gaoussou Youssouf Raff, Edward Darvish, Kasra Ferraro, Frank Matuszek, Cynthia Booz Allen Hamilton Mclean VA 22102 USA Univ Maryland Baltimore Cty Baltimore MD 21228 USA
We propose a cross-modality manifold alignment procedure that leverages triplet loss to jointly learn consistent, multi-modal embeddings of language-based concepts of real-world items. Our approach learns these embedd... 详细信息
来源: 评论
Instagram Filter Removal on Fashionable Images
Instagram Filter Removal on Fashionable Images
收藏 引用
IEEE/CVF conference on computer vision and pattern recognition (CVPR)
作者: Kinli, Furkan Ozcan, Baris Kirac, Furkan Ozyegin Univ Video Vis & Graph Lab Istanbul Turkey
Social media images are generally transformed by filtering to obtain aesthetically more pleasing appearances. However, CNNs generally fail to interpret both the image and its filtered version as the same in the visual... 详细信息
来源: 评论
DeepObjStyle: Deep Object-based Photo Style Transfer
DeepObjStyle: Deep Object-based Photo Style Transfer
收藏 引用
IEEE/CVF conference on computer vision and pattern recognition (CVPR)
作者: Mastan, Indra Deep Raman, Shanmuganathan Indian Inst Technol Gandhinagar Gandhinagar Gujarat India
One of the major challenges of style transfer is the appropriate image features supervision between the output image and the input images (style and content). An efficient strategy would be to define an object map bet... 详细信息
来源: 评论
Boosting Adversarial Robustness using Feature Level Stochastic Smoothing
Boosting Adversarial Robustness using Feature Level Stochast...
收藏 引用
IEEE/CVF conference on computer vision and pattern recognition (CVPR)
作者: Addepalli, Sravanti Jain, Samyak Sriramanan, Gaurang Babu, R. Venkatesh Indian Inst Sci Video Analyt Lab Dept Computat & Data Sci Bangalore Karnataka India
Advances in adversarial defenses have led to a significant improvement in the robustness of Deep Neural Networks. However, the robust accuracy of present state-of-the-art defenses is far from the requirements in criti... 详细信息
来源: 评论