Building footprints (BFP) provide useful visual context for users of digital maps when navigating in space. This paper proposes a method for extracting and symbolizing building footprints from satellite imagery using ...
详细信息
ISBN:
(数字)9781538661000
ISBN:
(纸本)9781538661000
Building footprints (BFP) provide useful visual context for users of digital maps when navigating in space. This paper proposes a method for extracting and symbolizing building footprints from satellite imagery using a convolutional neural network (CNN). The CNN architecture outputs rotated rectangles, providing a symbolized approximation that works well for small buildings. Experiments are conducted on the four cities in the DeepGlobe Challenge dataset (Las Vegas, Paris, Shanghai, Khartoum). Our method performs best on suburbs consisting of individual houses. These experiments show that either large buildings or buildings without clear delineation produce weaker results in terms of precision and recall.
We introduce the first benchmark for a new problem - recognizing human action adverbs (HAA): "Adverbs Describing Human Actions" (ADHA). We demonstrate some key features of ADHA: a semantically complete set o...
详细信息
ISBN:
(数字)9781538661000
ISBN:
(纸本)9781538661000
We introduce the first benchmark for a new problem - recognizing human action adverbs (HAA): "Adverbs Describing Human Actions" (ADHA). We demonstrate some key features of ADHA: a semantically complete set of adverbs describing human actions, a set of common, describable human actions, and an exhaustive labelling of simultaneously emerging actions in each video. We commit an in-depth analysis on the implementation of current effective models in action recognition and image captioning on adverb recognition, and the results reveal that such methods are unsatisfactory. Furthermore, we propose a novel three-stream hybrid model to tackle the HAA problem, which achieves better performances and receives relatively promising results.
We develop a deep convolutional neural networks (CNNs) to deal with the blurry artifacts caused by the defocus of the camera using dual-pixel images. Specifically, we develop a double attention network which consists ...
详细信息
ISBN:
(纸本)9781665448994
We develop a deep convolutional neural networks (CNNs) to deal with the blurry artifacts caused by the defocus of the camera using dual-pixel images. Specifically, we develop a double attention network which consists of attentional encoders, triple locals and global local modules to effectively extract useful information from each image in the dual-pixels and select the useful information from each image and synthesize the final output image. We demonstrate the effectiveness of the proposed deblurring algorithm in terms of both qualitative and quantitative aspects by evaluating on the test set in the NTIRE 2021 Defocus Deblurring using Dual-pixel Images Challenge [1] [4].
In this paper we present our approach to the Track 1 of the 2021 AI City Challenge. The goal of the challenge track is to to analyse footage captured with traffic cameras by counting the number of vehicles performing ...
详细信息
ISBN:
(纸本)9781665448994
In this paper we present our approach to the Track 1 of the 2021 AI City Challenge. The goal of the challenge track is to to analyse footage captured with traffic cameras by counting the number of vehicles performing various pre-defined motions of interest. Our approach is based on the CenterTrack object detection and tracking neural network used in conjunction with a simple IoU-based tracking algorithm. In the public evaluation server our system achieved the S1 score of 0.8449 placing it at the 8th place on the public leaderboard.
Translation symmetry is one of the most important pattern characteristics in natural and man-made environments. Detecting translation symmetry is a grand challenge in computervision. This has a large spectrum of real...
详细信息
ISBN:
(纸本)9780769549903
Translation symmetry is one of the most important pattern characteristics in natural and man-made environments. Detecting translation symmetry is a grand challenge in computervision. This has a large spectrum of real-world applications from industrial settings to design, arts, entertainment and eduction. This paper describes the algorithm we have submitted for the Symmetry Detection Competition 2013. We introduce two new concepts in our symmetric repetitive pattern detection algorithm. The first concept is the bottom-up detection-inference approach. This extends the versatility of current detection methods to a higher level segmentation. The second concept is the framework of a new theoretical analysis of invariant repetitive patterns. This is crucial in symmetry/non-symmetry structure extraction but has less coverage in the previous literature on pattern detection and classification.
We describe an efficient method of improving the performance of vision algorithms operating on video streams by reducing the amount of data captured and transferred from image sensors to analysis servers in a data-awa...
详细信息
ISBN:
(纸本)9781728193601
We describe an efficient method of improving the performance of vision algorithms operating on video streams by reducing the amount of data captured and transferred from image sensors to analysis servers in a data-aware manner. The key concept is to combine guided, highly heterogeneous sampling with an intelligent Scene Cache. This enables the system to adapt to spatial and temporal patterns in the scene, thus reducing redundant data capture and processing. A software prototype of our framework running on a general-purpose embedded processor enables superior object detection accuracy (by 56%) at similar energy consumption (slight improvement of 4%) compared to an H.264 hardware accelerator.
Trajectory prediction is an important task in autonomous driving. State-of-the-art trajectory prediction models often use attention mechanisms to model the interaction between agents. In this paper, we show that the a...
详细信息
ISBN:
(数字)9781665487399
ISBN:
(纸本)9781665487399
Trajectory prediction is an important task in autonomous driving. State-of-the-art trajectory prediction models often use attention mechanisms to model the interaction between agents. In this paper, we show that the attention information from such models can also be used to measure the importance of each agent with respect to the ego vehicle's future planned trajectory. Our experiment results on the nuPlans dataset show that our method can effectively find and rank surrounding agents by their impact on the ego's plan.
The land cover classification task of the DeepGlohe Challenge presents significant obstacles even to state of the art segmentation models due to a small amount of data, incomplete and sometimes incorrect labeling, and...
详细信息
ISBN:
(数字)9781538661000
ISBN:
(纸本)9781538661000
The land cover classification task of the DeepGlohe Challenge presents significant obstacles even to state of the art segmentation models due to a small amount of data, incomplete and sometimes incorrect labeling, and highly imbalanced classes. In this work, we show an approach based on the U-Net architecture with the Lovcisz-Softmax loss that successfully alleviates these problems: we compare several different convolutional architectures for U-Net encoders.
Traditional empirical risk minimization (ERM) for semantic segmentation can disproportionately advantage or disadvantage certain target classes in favor of an (unfair but) improved overall performance. Inspired by the...
详细信息
ISBN:
(纸本)9781665448994
Traditional empirical risk minimization (ERM) for semantic segmentation can disproportionately advantage or disadvantage certain target classes in favor of an (unfair but) improved overall performance. Inspired by the recently introduced tilted ERM (TERM), we propose tilted cross-entropy (TCE) loss and adapt it to the semantic segmentation setting to minimize performance disparity among target classes and promote fairness. Through quantitative and qualitative performance analyses, we demonstrate that the proposed Stochastic TCE for semantic segmentation can offer improved overall fairness by efficiently minimizing the performance disparity among the target classes of Cityscapes.
We present a new state-of-the-art on the text-to-video retrieval task on MSRVTT and LSMDC benchmarks where our model outperforms all previous solutions by a large margin. Moreover, state-of-the-art results are achieve...
详细信息
ISBN:
(纸本)9781665448994
We present a new state-of-the-art on the text-to-video retrieval task on MSRVTT and LSMDC benchmarks where our model outperforms all previous solutions by a large margin. Moreover, state-of-the-art results are achieved using a single model and without finetuning. This multidomain generalisation is achieved by a proper combination of different video caption datasets. We show that our practical approach for training on different datasets can improve test results of each other. Additionally, we check intersection between many popular datasets and show that MSRVTT as well as ActivityNet contains a significant overlap between the test and the training parts. More details are available at https://***/papermsucode/mdmmt.
暂无评论