咨询与建议

限定检索结果

文献类型

  • 6,810 篇 会议
  • 36 篇 期刊文献
  • 3 册 图书

馆藏范围

  • 6,848 篇 电子文献
  • 1 种 纸本馆藏

日期分布

学科分类号

  • 4,042 篇 工学
    • 3,808 篇 计算机科学与技术...
    • 1,615 篇 软件工程
    • 847 篇 光学工程
    • 383 篇 信息与通信工程
    • 286 篇 控制科学与工程
    • 212 篇 机械工程
    • 189 篇 电气工程
    • 97 篇 生物医学工程(可授...
    • 80 篇 电子科学与技术(可...
    • 79 篇 生物工程
    • 62 篇 仪器科学与技术
    • 39 篇 力学(可授工学、理...
    • 38 篇 建筑学
    • 37 篇 土木工程
    • 34 篇 航空宇航科学与技...
    • 29 篇 安全科学与工程
    • 24 篇 测绘科学与技术
    • 23 篇 交通运输工程
    • 22 篇 化学工程与技术
  • 1,618 篇 理学
    • 1,021 篇 物理学
    • 1,005 篇 数学
    • 379 篇 统计学(可授理学、...
    • 160 篇 生物学
    • 38 篇 系统科学
    • 27 篇 化学
  • 185 篇 管理学
    • 132 篇 图书情报与档案管...
    • 56 篇 管理科学与工程(可...
    • 32 篇 工商管理
  • 153 篇 医学
    • 153 篇 临床医学
    • 22 篇 基础医学(可授医学...
  • 18 篇 法学
  • 11 篇 教育学
  • 10 篇 农学
  • 7 篇 经济学
  • 2 篇 军事学
  • 1 篇 艺术学

主题

  • 2,394 篇 computer vision
  • 870 篇 pattern recognit...
  • 667 篇 cameras
  • 663 篇 computer science
  • 633 篇 face recognition
  • 577 篇 layout
  • 550 篇 image segmentati...
  • 524 篇 conferences
  • 520 篇 shape
  • 479 篇 object recogniti...
  • 470 篇 robustness
  • 411 篇 humans
  • 354 篇 feature extracti...
  • 338 篇 object detection
  • 308 篇 training
  • 278 篇 application soft...
  • 271 篇 image recognitio...
  • 263 篇 lighting
  • 242 篇 image reconstruc...
  • 236 篇 computational mo...

机构

  • 42 篇 microsoft resear...
  • 26 篇 department of co...
  • 21 篇 swiss fed inst t...
  • 21 篇 school of comput...
  • 20 篇 department of co...
  • 19 篇 swiss fed inst t...
  • 19 篇 carnegie mellon ...
  • 18 篇 department of co...
  • 18 篇 the robotics ins...
  • 17 篇 department of in...
  • 17 篇 robotics institu...
  • 17 篇 institute of com...
  • 16 篇 univ sci & techn...
  • 15 篇 tsinghua univ pe...
  • 14 篇 department of el...
  • 14 篇 computer vision ...
  • 14 篇 school of comput...
  • 14 篇 microsoft resear...
  • 14 篇 school of comput...
  • 13 篇 univ maryland co...

作者

  • 39 篇 timofte radu
  • 28 篇 s.k. nayar
  • 26 篇 huang thomas s.
  • 24 篇 t. kanade
  • 23 篇 xiaoou tang
  • 21 篇 t.s. huang
  • 20 篇 van gool luc
  • 20 篇 chellappa rama
  • 19 篇 nayar shree k.
  • 19 篇 t. darrell
  • 17 篇 li stan z.
  • 17 篇 torralba antonio
  • 17 篇 a.k. jain
  • 17 篇 a. zisserman
  • 17 篇 jain anil k.
  • 16 篇 m. hebert
  • 16 篇 g. healey
  • 16 篇 heung-yeung shum
  • 16 篇 zisserman andrew
  • 15 篇 m. shah

语言

  • 6,847 篇 英文
  • 2 篇 中文
  • 1 篇 土耳其文
检索条件"任意字段=2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, CVPR 2006"
6849 条 记 录,以下是281-290 订阅
排序:
Attenuating Catastrophic Forgetting by Joint Contrastive and Incremental Learning
Attenuating Catastrophic Forgetting by Joint Contrastive and...
收藏 引用
ieee/CVF conference on computer vision and pattern recognition (cvpr)
作者: Ferdinand, Quentin Clement, Benoit Oliveau, Quentin Le Chenadec, Gilles Papadakis, Panagiotis Naval Grp Res Cherbourg En Cotentin France ENSTA Bretagne Lab STICC UMR 6285 Brest France IMT Atlantique Lab STICC UMR 6285 Brest France
In class incremental learning, discriminative models are trained to classify images while adapting to new instances and classes incrementally. Training a model to adapt to new classes without total access to previous ... 详细信息
来源: 评论
À-la-carte Prompt Tuning (APT): Combining Distinct Data Via Composable Prompting
À-la-carte Prompt Tuning (APT): Combining Distinct Data Via...
收藏 引用
2023 ieee/CVF conference on computer vision and pattern recognition, cvpr 2023
作者: Bowman, Benjamin Achille, Alessandro Zancato, Luca Trager, Matthew Perera, Pramuditha Paolini, Giovanni Soatto, Stefano Aws Ai Labs United States Ucla United States
We introduce À-la-carte Prompt Tuning (APT), a transformer-based scheme to tune prompts on distinct data so that they can be arbitrarily composed at inference time. The individual prompts can be trained in isolat... 详细信息
来源: 评论
Edge-enhanced Feature Distillation Network for Efficient Super-Resolution
Edge-enhanced Feature Distillation Network for Efficient Sup...
收藏 引用
ieee/CVF conference on computer vision and pattern recognition (cvpr)
作者: Wang, Yan Nankai Univ Nankai Baidu Joint Lab Tianjin Peoples R China
With the recently massive development in convolution neural networks, numerous lightweight CNN-based image super-resolution methods have been proposed for practical deployments on edge devices. However, most existing ... 详细信息
来源: 评论
SymDNN: Simple & Effective Adversarial Robustness for Embedded Systems
SymDNN: Simple & Effective Adversarial Robustness for Embedd...
收藏 引用
ieee/CVF conference on computer vision and pattern recognition (cvpr)
作者: Dey, Swarnava Dasgupta, Pallab Chakrabarti, Partha P. Indian Inst Technol Kharagpur Kharagpur 721302 W Bengal India
We propose SymDNN, a Deep Neural Network (DNN) inference scheme, to segment an input image into small patches, replace those patches with representative symbols, and use the reconstructed image for CNN inference. This... 详细信息
来源: 评论
Multi-view Multi-label Canonical Correlation Analysis for Cross-modal Matching and Retrieval
Multi-view Multi-label Canonical Correlation Analysis for Cr...
收藏 引用
ieee/CVF conference on computer vision and pattern recognition (cvpr)
作者: Sanghavi, Rushil Verma, Yashaswi IIT Jodhpur Jodhpur Rajasthan India
In this paper, we address the problem of cross-modal retrieval in presence of multi-view and multi-label data. For this, we present Multi-view Multi-label Canonical Correlation Analysis (or MVMLCCA), which is a genera... 详细信息
来源: 评论
CarlaScenes: A synthetic dataset for odometry in autonomous driving
CarlaScenes: A synthetic dataset for odometry in autonomous ...
收藏 引用
ieee/CVF conference on computer vision and pattern recognition (cvpr)
作者: Kloukiniotis, Andreas Papandreou, Andreas Anagnostopoulos, Christos Lalos, Aris Kapsalas, Petros Nguyen, D-, V Moustakas, Konstantinos Univ Patras Patras Greece ISI Ind Syst Inst Patras Patras Greece Panasonic Automot Langen Germany
Despite the great scientific effort to capture adequately the complex environments in which autonomous vehicles (AVs) operate there are still use-cases that even SoA methods fail to handle. Specifically in odometry pr... 详细信息
来源: 评论
Searching for Efficient Neural Architectures for On-Device ML on Edge TPUs
Searching for Efficient Neural Architectures for On-Device M...
收藏 引用
ieee/CVF conference on computer vision and pattern recognition (cvpr)
作者: Akin, Berkin Gupta, Suyog Long, Yun Spiridonov, Anton Wang, Zhuo White, Marie Xu, Hao Zhou, Ping Zhou, Yanqi
On-device ML accelerators are becoming a standard in modern mobile system-on-chips (SoC). Neural architecture search (NAS) comes to the rescue for efficiently utilizing the high compute throughput offered by these acc... 详细信息
来源: 评论
Alleviating Representational Shift for Continual Fine-tuning
Alleviating Representational Shift for Continual Fine-tuning
收藏 引用
ieee/CVF conference on computer vision and pattern recognition (cvpr)
作者: Jie, Shibo Deng, Zhi-Hong Li, Ziheng Peking Univ Sch Artificial Intelligence Beijing Peoples R China
We study a practical setting of continual learning: fine-tuning on a pre-trained model continually. Previous work has found that, when training on new tasks, the features (penultimate layer representations) of previou... 详细信息
来源: 评论
Out-Of-Distribution Detection In Unsupervised Continual Learning
Out-Of-Distribution Detection In Unsupervised Continual Lear...
收藏 引用
ieee/CVF conference on computer vision and pattern recognition (cvpr)
作者: He, Jiangpeng Zhu, Fengqing Purdue Univ Elmore Family Sch Elect & Comp Engn W Lafayette IN 47907 USA
Unsupervised continual learning aims to learn new tasks incrementally without requiring human annotations. However, most existing methods, especially those targeted on image classification, only work in a simplified s... 详细信息
来源: 评论
Multi-Camera Vehicle Tracking System for AI City Challenge 2022
Multi-Camera Vehicle Tracking System for AI City Challenge 2...
收藏 引用
ieee/CVF conference on computer vision and pattern recognition (cvpr)
作者: Li, Fei Wang, Zhen Nie, Ding Zhang, Shiyi Jiang, Xingqun Zhao, Xingxing Hu, Peng BOE Technol Grp Beijing Peoples R China
Multi-Target Multi-Camera tracking is a fundamental task for intelligent traffic systems. The track 1 of AI City Challenge 2022 aims at the city-scale multi-camera vehicle tracking task. In this paper we propose an ac... 详细信息
来源: 评论