咨询与建议

限定检索结果

文献类型

  • 140 篇 会议
  • 7 篇 期刊文献

馆藏范围

  • 147 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 71 篇 工学
    • 66 篇 计算机科学与技术...
    • 15 篇 软件工程
    • 11 篇 电气工程
    • 10 篇 控制科学与工程
    • 2 篇 仪器科学与技术
    • 2 篇 信息与通信工程
    • 1 篇 力学(可授工学、理...
    • 1 篇 机械工程
    • 1 篇 建筑学
  • 11 篇 理学
    • 10 篇 数学
    • 2 篇 系统科学
    • 2 篇 统计学(可授理学、...
  • 7 篇 管理学
    • 6 篇 管理科学与工程(可...
    • 3 篇 工商管理
    • 1 篇 图书情报与档案管...
  • 3 篇 经济学
    • 3 篇 应用经济学

主题

  • 76 篇 dynamic programm...
  • 39 篇 learning
  • 26 篇 optimal control
  • 25 篇 reinforcement le...
  • 15 篇 function approxi...
  • 15 篇 control systems
  • 14 篇 approximation al...
  • 14 篇 equations
  • 13 篇 neural networks
  • 13 篇 stochastic proce...
  • 12 篇 convergence
  • 10 篇 state-space meth...
  • 10 篇 cost function
  • 9 篇 mathematical mod...
  • 8 篇 trajectory
  • 8 篇 approximation me...
  • 7 篇 approximate dyna...
  • 7 篇 algorithm design...
  • 7 篇 adaptive control
  • 7 篇 heuristic algori...

机构

  • 4 篇 school of inform...
  • 4 篇 department of in...
  • 3 篇 department of el...
  • 3 篇 northeastern uni...
  • 3 篇 univ texas autom...
  • 3 篇 arizona state un...
  • 3 篇 robotics institu...
  • 3 篇 univ illinois de...
  • 2 篇 princeton univ d...
  • 2 篇 national science...
  • 2 篇 college of mecha...
  • 2 篇 key laboratory o...
  • 2 篇 univ utrecht dep...
  • 2 篇 department of op...
  • 1 篇 inria
  • 1 篇 computational le...
  • 1 篇 school of automa...
  • 1 篇 univ cincinnati ...
  • 1 篇 toyota technol c...
  • 1 篇 neuroinformatics...

作者

  • 5 篇 liu derong
  • 4 篇 xu xin
  • 4 篇 martin riedmille...
  • 4 篇 huaguang zhang
  • 4 篇 marco a. wiering
  • 4 篇 zhang huaguang
  • 4 篇 si jennie
  • 4 篇 derong liu
  • 3 篇 hado van hasselt
  • 3 篇 lewis frank l.
  • 3 篇 dongbin zhao
  • 3 篇 powell warren b.
  • 3 篇 warren b. powell
  • 3 篇 riedmiller marti...
  • 2 篇 manuel loth
  • 2 篇 van hasselt hado
  • 2 篇 preux philippe
  • 2 篇 hu dewen
  • 2 篇 jennie si
  • 2 篇 philippe preux

语言

  • 142 篇 英文
  • 5 篇 其他
检索条件"任意字段=2007 IEEE Symposium on Approximate Dynamic Programming and Reinforcement Learning, ADPRL 2007"
147 条 记 录,以下是1-10 订阅
排序:
Proceedings of the 2007 ieee symposium on approximate dynamic programming and reinforcement learning (adprl 2007)
Proceedings of the 2007 IEEE Symposium on Approximate Dynami...
收藏 引用
2007 ieee symposium on approximate dynamic programming and reinforcement learning, adprl 2007
The proceedings contain 49 papers. The topics discussed include: fitted Q iteration with CMACs;reinforcement-learning-based magneto-hydrodynamic control hypersonic flows;a novel fuzzy reinforcement learning approach i... 详细信息
来源: 评论
2007 ieee international symposium on approximate dynamic programming and reinforcement learning
Proceedings of the 2007 IEEE Symposium on Approximate Dynami...
收藏 引用
Proceedings of the 2007 ieee symposium on approximate dynamic programming and reinforcement learning, adprl 2007 2007年
作者: Liu, Derong Munos, Remi Si, Jennie Wunsch, II, Donald C.
No abstract available
来源: 评论
reinforcement learning by backpropagation through an LSTM model/critic
Reinforcement learning by backpropagation through an LSTM mo...
收藏 引用
ieee International symposium on approximate dynamic programming and reinforcement learning
作者: Bakker, Bram Univ Amsterdam Inst Informat Intelligent Syst Lab Amsterdam NL-1098 SJ Amsterdam Netherlands
This paper describes backpropagation through an LSTM recurrent neural network model/critic, for reinforcement learning tasks in partially observable domains. This combines the advantage of LSTM's strength at learn... 详细信息
来源: 评论
An approximate dynamic programming strategy for responsive traffic signal control
An approximate dynamic programming strategy for responsive t...
收藏 引用
ieee International symposium on approximate dynamic programming and reinforcement learning
作者: Cai, Chen Univ Coll London Ctr Transport Studies London WC1E 6BT England
This paper proposes an approximate dynamic programming strategy for responsive traffic signal control. It is the first attempt that optimizes signal control objective dynamically through adaptive approximation of valu... 详细信息
来源: 评论
Toward effective combination of off-line and on-line training in ADP framework
Toward effective combination of off-line and on-line trainin...
收藏 引用
ieee International symposium on approximate dynamic programming and reinforcement learning
作者: Prokhorov, Danil Toyota Technol Ctr Ann Arbor MI 48105 USA
We are interested in finding the most effective combination between off-line and on-line/real-time training in approximate dynamic programming. We introduce our approach of combining proven off-line methods of trainin... 详细信息
来源: 评论
Randomly sampling actions in dynamic programming
Randomly sampling actions in dynamic programming
收藏 引用
ieee International symposium on approximate dynamic programming and reinforcement learning
作者: Atkeson, Christopher G. Carnegie Mellon Univ Inst Robot Pittsburgh PA 15213 USA
We describe an approach towards reducing the curse of dimensionality for deterministic dynamic programming with continuous actions by randomly sampling actions while computing a steady state value function and policy.... 详细信息
来源: 评论
An optimal ADP algorithm for a high-dimensional stochastic control problem
An optimal ADP algorithm for a high-dimensional stochastic c...
收藏 引用
ieee International symposium on approximate dynamic programming and reinforcement learning
作者: Nascimento, Juliana Powell, Warren Princeton Univ Dept Operat Res & Financial Engn Princeton NJ 08544 USA
We propose a provably optimal approximate dynamic programming algorithm for a class of multistage stochastic problems, taking into account that the probability distribution of the underlying stochastic process is not ... 详细信息
来源: 评论
On a successful application of multi-agent reinforcement learning to operations research benchmarks
On a successful application of multi-agent reinforcement lea...
收藏 引用
ieee International symposium on approximate dynamic programming and reinforcement learning
作者: Gabel, Thomas Riedmiller, Martin Univ Osnabruck Dept Math & Comp Sci Inst Cognit Sci D-49069 Osnabruck Germany
In this paper, we suggest and analyze the use of approximate reinforcement learning techniques for a new category of challenging benchmark problems from the field of Operations Research. We demonstrate that interpreti... 详细信息
来源: 评论
reinforcement learning in continuous action spaces
Reinforcement learning in continuous action spaces
收藏 引用
ieee International symposium on approximate dynamic programming and reinforcement learning
作者: van Hasselt, Hado Wiering, Marco A. Univ Utrecht Dept Informat & Comp Sci Intelligent Syst Grp Padualaan 14 NL-3508 TB Utrecht Netherlands
Quite some research has been done on reinforcement learning in continuous environments, but the research on problems where the actions can also be chosen from a continuous space is much more limited. We present a new ... 详细信息
来源: 评论
Short-term stock market timing prediction under reinforcement learning schemes
Short-term stock market timing prediction under reinforcemen...
收藏 引用
2007 ieee symposium on approximate dynamic programming and reinforcement learning, adprl 2007
作者: Hailin, Li Dagli, Cihan H. Enke, David Department of Engineering Management and Systems Engineering University of Missouri-Rolla Rolla MO 65409-0370 United States
There are fundamental difficulties when only using a supervised learning philosophy to predict financial stock short-term movements. We present a reinforcement-oriented forecasting framework in which the solution is c... 详细信息
来源: 评论